
Data Acquisition Toolbox™
User's Guide

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Data Acquisition Toolbox™ User's Guide
© COPYRIGHT 2005–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
May 1999 First printing New for Version 1
November 2000 Second printing Revised for Version 2 (Release 12)
June 2001 Third printing Revised for Version 2.1 (Release 12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)
October 2004 Online only Revised for Version 2.5.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.6 (Release 14SP2)
September 2005 Online only Revised for Version 2.7 (Release 14SP3)
October 2005 Reprint Version 2.1 (Notice updated)
November 2005 Online only Revised for Version 2.8 (Release 14SP3+)
March 2006 Fourth printing Revised for Version 2.8.1 (Release 2006a)
September 2006 Online only Revised for Version 2.9 (Release 2006b)
March 2007 Online only Revised for Version 2.10 (Release 2007a)
May 2007 Fifth printing Minor revision for Version 2.10
September 2007 Online only Revised for Version 2.11 (Release 2007b)
March 2008 Online only Revised for Version 2.12 (Release 2008a)
October 2008 Online only Revised for Version 2.13 (Release 2008b)
March 2009 Online only Revised for Version 2.14 (Release 2009a)
September 2009 Online only Revised for Version 2.15 (Release 2009b)
March 2010 Online only Revised for Version 2.16 (Release 2010a)
September 2010 Online only Revised for Version 2.17 (Release 2010b)
April 2011 Online only Revised for Version 2.18 (Release 2011a)
September 2011 Online only Revised for Version 3.0 (Release 2011b)
March 2012 Online only Revised for Version 3.1 (Release 2012a)
September 2012 Online only Revised for Version 3.2 (Release 2012b)
March 2013 Online only Revised for Version 3.3 (Release 2013a)
September 2013 Online only Revised for Version 3.4 (Release 2013b)
March 2014 Online only Revised for Version 3.5 (Release 2014a)
October 2014 Online Only Revised Version 3.6 (Release 2014b)
March 2015 Online only Revised for Version 3.7 (R2015a)
September 2015 Online only Revised for Version 3.8 (Release 2015b)
March 2016 Online only Revised for Version 3.9 (Release 2016a)
September 2016 Online only Revised for Version 3.10 (Release 2016b)
March 2017 Online only Revised for Version 3.11 (Release 2017a)
September 2017 Online only Revised for Version 3.12 (Release 2017b)
March 2018 Online only Revised for Version 3.13 (Release 2018a)

Introduction to Data Acquisition
1

Data Acquisition Toolbox Product Description 1-2
Key Features . 1-2

Product Capabilities . 1-3
Understanding Data Acquisition Toolbox 1-3
Supported Hardware . 1-3

Anatomy of a Data Acquisition Experiment 1-5
System Setup . 1-5
Calibration . 1-5
Trials . 1-5

Data Acquisition System . 1-6
Overview . 1-6
Data Acquisition Hardware . 1-8
Sensors . 1-10
Signal Conditioning . 1-13
The Computer . 1-15
Software . 1-15

Analog Input Subsystem . 1-18
Function of the Analog Input Subsystem 1-18
Sampling . 1-19
Quantization . 1-21
Channel Configuration . 1-25
Transferring Data from Hardware to System Memory 1-27

Making Quality Measurements . 1-30
What Do You Measure? . 1-30
Accuracy and Precision . 1-30
Noise . 1-34
Matching the Sensor Range and A/D Converter Range 1-35

v

Contents

How Fast Should a Signal Be Sampled? 1-36

Selected Bibliography . 1-39

Using Data Acquisition Toolbox Software
2

Installation Information . 2-2
Prerequisites . 2-2
Toolbox Installation . 2-2
Hardware and Driver Installation . 2-3

Access Your Hardware . 2-4
Connect to Your Hardware . 2-4
Acquire Audio Data . 2-4
Generate Audio Data . 2-5
Acquire and Generate Digital Data . 2-6

Examine Your Hardware Resources . 2-9
Use the daq.getDevices Function . 2-9
General Toolbox Information . 2-9

Introduction to the Session-Based Interface
3

Data Acquisition Session . 3-2

Getting Help . 3-4
Command-Line Help . 3-4
Online Help . 3-4
Session-Based Interface Examples . 3-4

vi Contents

Session-Based Interface Workflows
4

Session Creation Workflow . 4-2

Analog Input and Output Workflow . 4-5

Digital Input and Output Workflow . 4-7

Counter and Timer Input and Output Workflow 4-9

Multichannel Audio Input and Output Workflow 4-10

Periodic Waveform Generation Workflow 4-11

Using the Session-Based Interface
5

Session-Based Interface Workflow . 5-2
Working with Sessions . 5-2
Session-Based Interface and Data Acquisition Toolbox 5-4

Digital Input and Output . 5-5

Discover Hardware Devices . 5-6

Create a Session . 5-8

Support Package Installer
6

Data Acquisition Toolbox Supported Hardware 6-2

Install Hardware Support Package for Device Driver 6-3
Install Support Packages . 6-3
Update or Uninstall Support Packages 6-3

vii

Session Based Analog Input and Output
7

Acquire Data in the Foreground . 7-2

Acquire Data from Multiple Channels . 7-4

Acquire Data in the Background . 7-6

Acquire Data from an Accelerometer . 7-8

Acquire Bridge Measurements . 7-12

Acquire Sound Pressure Data . 7-14

Acquire IEPE Data . 7-17

Getting Started Acquiring Data with Digilent® Analog
Discovery™ . 7-19

Generate Signals in the Foreground . 7-22

Generate Signals Using Multiple Channels 7-24

Generate Signals in the Background . 7-26

Generate Signals in the Background Continuously 7-27

Getting Started Generating Data with Digilent® Analog
Discovery™ . 7-29

Acquire Data and Generate Signals Simultaneously 7-31

Acquire Data with the Analog Input Recorder 7-33

Session-Based Counter Input and Output
8

Analog and Digital Counters . 8-2

viii Contents

Acquire Counter Input Data . 8-3
addCounterInputChannel . 8-3
Acquire a Single EdgeCount . 8-3
Acquire a Single Frequency Count . 8-4
Acquire Counter Input Data in the Foreground 8-5

Generate Pulse Data on a Counter Channel 8-7
Use addCounterOutputChannel . 8-7
Generate Pulses on a Counter Output Channel 8-7

Session Based Digital Operations
9

Digital Subsystem Channels . 9-2
Digital Clocked Operations . 9-2
Access Digital Subsystem Information 9-4

Acquire Non-Clocked Digital Data . 9-6

Acquire Digital Data Using an External Clock 9-7

Acquire Digital Data Using a Counter Output Channel as
External Clock . 9-9

Generate a Clock Using a Counter Output Channel 9-9
Use Counter Clock To Acquire Clocked Digital Data 9-10

Acquire Digital Data Using a Shared Clock 9-12

Acquire Digital Data Using an External Clock via Chassis PFI
Terminal . 9-14

Acquire Digital Data in Hexadecimal Values 9-15

Control Stepper Motor using Digital Outputs 9-16

Generate Non-Clocked Digital Data . 9-21

Generate Signals Using Decimal Data Across Multiple
Lines . 9-22

ix

Generate and Acquire Data on Bidirectional Channels 9-23

Generate Signals on Both Analog and Digital Channels 9-25

Output Digital Data Serially Using a Software Clock 9-26

Multichannel Audio
10

Multichannel Audio Input and Output 10-2
Multichannel Audio Session Rate . 10-2
Multichannel Audio Range . 10-2
Acquire Multichannel Audio Data . 10-3
Generate Audio Signals . 10-4

Waveform Function Generation
11

Digilent Analog Discovery Devices . 11-2

Digilent Waveform Function Generation Channels 11-3

Waveform Types . 11-6

Generate a Standard Waveform Using Waveform Function
Generation Channels . 11-9

Generate an Arbitrary Waveform Using Waveform Function
Generation Channels . 11-11

x Contents

Triggers and Clocks
12

Trigger Connections . 12-2
When to Use Triggers . 12-2
External Triggering . 12-3

Acquire Voltage Data Using a Digital Trigger 12-5

Clock Connections . 12-7
When to Use Clocks . 12-7
Import Scan Clock from External Source 12-7
Export Scan Clock to External System 12-8

Session-Based Synchronization
13

Synchronization . 13-2
Shared Triggers and Shared Scan Clocks 13-3
Source and Destination Devices . 13-5
Automatic Synchronization . 13-6

Multiple-Device Synchronization Using USB or PXI
Devices . 13-7

Acquire Synchronized Data Using USB Devices 13-7
Acquire Synchronized Data Using PXI Devices 13-9

Synchronize with PFI on CompactDAQ Chassis Without
Terminals . 13-12

Multiple-Chassis Synchronization with CompactDAQ
Devices . 13-13

Synchronize DSA Devices . 13-14
PXI DSA Devices . 13-14
Hardware Restrictions . 13-14
Synchronize Dynamic Signal Analyzer PXI Devices 13-17
PCI DSA Devices . 13-18
Synchronize DSA PCI Devices . 13-18

xi

Handle Filter Delays with DSA Devices 13-19

Transition Your Code to Session-Based Interface
14

Transition Your Code to Session-Based Interface 14-2
Transition Common Workflow Commands 14-2
Acquire Analog Data . 14-3
Use Triggers . 14-4
Log Data . 14-6
Set Range of Analog Input Subsystem 14-8
Fire an Event When Number of Scans Exceed Specified

Value . 14-8
Use Timeout to Block MATLAB While an Operation

Completes . 14-9
Count Pulses . 14-10

Troubleshooting Your Hardware
A

Supported Hardware . A-2

Hardware and Device Drivers . A-3
Registering the Hardware Driver Adaptor A-3
Device Driver Registration . A-3
Hardware Diagnostics . A-3

Troubleshooting Tips . A-4
Find Devices and Create a Session . A-4
Is My NI-DAQ Driver Supported? . A-5
Why Doesn’t My Hardware Work? . A-6
Cannot Create Session . A-6
Why Was My Session Deleted? . A-7
Cannot Find Hardware Vendor . A-7
Cannot Find Devices . A-8
What Is a Reserved Hardware Error? A-9
What Are Devices with an Asterisk (*)? A-10

xii Contents

Network Device Appears with an Asterisk (*) A-11
ADC Overrun Error with External Clock A-11
Cannot Add Clock Connection to PXI Devices A-11
Cannot Complete Long Foreground Acquisition A-12
Cannot Use PXI 4461 and 4462 Together A-12
Counters Restart When You Call Prepare A-12
Cannot Get Correct Scan Rate with Digilent Devices A-12
Cannot Simultaneously Acquire and Generate with myDAQ

Devices . A-12
Simultaneous Analog Input and Output Not Synchronized

Correctly . A-12
Counter Single Scan Returns NaN . A-13
External Clock Will Not Trigger Scan A-13
Why Does My S/PDIF Device Time Out? A-13
Audio Output Channels Display Incorrect

ScansOutputByHardware Value . A-13
MOTU Device Not Working Correctly A-13

Contacting MathWorks . A-15

Hardware Limitations by Vendor
B

Limitations by Vendor . B-2

National Instruments Hardware . B-3

Digilent Analog Discovery . B-4

Windows Sound Cards . B-5

Measurement Computing Hardware . B-6

Managing Your Memory Resources
C

What is Memory Allocation . C-2

xiii

How Much Memory Do You Need? . C-3

Glossary

xiv Contents

Introduction to Data Acquisition

• “Data Acquisition Toolbox Product Description” on page 1-2
• “Product Capabilities” on page 1-3
• “Anatomy of a Data Acquisition Experiment” on page 1-5
• “Data Acquisition System” on page 1-6
• “Analog Input Subsystem” on page 1-18
• “Making Quality Measurements” on page 1-30
• “Selected Bibliography” on page 1-39

1

Data Acquisition Toolbox Product Description
Connect to data acquisition cards, devices, and modules

Data Acquisition Toolbox provides functions for connecting MATLAB® to data acquisition
hardware. The toolbox supports a variety of DAQ hardware, including USB, PCI, PCI
Express®, PXI, and PXI-Express devices, from National Instruments and other vendors.

With the toolbox you can configure data acquisition hardware and read data into MATLAB
for immediate analysis. You can also send out data over analog and digital output
channels provided by data acquisition hardware. The toolbox’s data acquisition software
includes functions for controlling analog input, analog output, counter/timer, and digital
I/O subsystems of a DAQ device. You can access device-specific features and synchronize
data acquired from multiple devices.

You can analyze data as you acquire it or save it for post-processing. You can also
automate tests and make iterative updates to your test setup based on analysis results.

Key Features
• Support for a variety of industry-standard data acquisition boards and USB modules
• Support for analog input, analog output, counters, timers, and digital I/O
• Direct access to voltage, current, IEPE accelerometer, and thermocouple

measurements
• Live acquisition of measured data directly into MATLAB
• Hardware and software triggers for control of data acquisition
• Device-independent software interface

1 Introduction to Data Acquisition

1-2

Product Capabilities
In this section...
“Understanding Data Acquisition Toolbox” on page 1-3
“Supported Hardware” on page 1-3

Understanding Data Acquisition Toolbox
Data Acquisition Toolbox enables you to:

• Configure external hardware devices.
• Read data into MATLAB for immediate analysis.
• Send out data.

Data Acquisition Toolbox is a collection of functions and a MEX-file (shared library) built
on the MATLAB technical computing environment. The toolbox also includes several
dynamic link libraries (DLLs) called adaptors, which enable you to interface with specific
hardware. The toolbox provides you with these main features:

• A framework for bringing live, measured data into the MATLAB workspace using PC-
compatible, plug-in data acquisition hardware

• Support for analog input (AI), analog output (AO), and digital I/O (DIO) subsystems
including simultaneous analog I/O conversions

• Support for these popular hardware vendors/devices:

• National Instruments® CompactDAQ chassis using the session-based interface
• National Instruments boards that use NI-DAQmx software
• Microsoft® Windows® sound cards

• Event-driven acquisitions

Supported Hardware
The list of hardware supported by Data Acquisition Toolbox can change in each release,
because hardware support is frequently added. The MathWorks website is the best place
to check for the most up-to-date listing.

 Product Capabilities

1-3

To see the full list of hardware that the toolbox supports, visit the supported hardware
page at https://www.mathworks.com/hardware-support/data-acquistion-
software.html.

1 Introduction to Data Acquisition

1-4

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html

Anatomy of a Data Acquisition Experiment

In this section...
“System Setup” on page 1-5
“Calibration” on page 1-5
“Trials” on page 1-5

System Setup
The first step in any data acquisition experiment is to install the hardware and software.
Hardware installation consists of plugging a board into your computer or installing
modules into an external chassis. Software installation consists of loading hardware
drivers and application software onto your computer. After the hardware and software are
installed, you can attach your sensors.

Calibration
After the hardware and software are installed and the sensors are connected, the data
acquisition hardware should be calibrated. Calibration consists of providing a known
input to the system and recording the output. For many data acquisition devices,
calibration can be easily accomplished with software provided by the vendor.

Trials
After the hardware is set up and calibrated, you can begin to acquire data. You might
think that if you completely understand the characteristics of the signal you are
measuring, then you should be able to configure your data acquisition system and acquire
the data.

However, your sensor might be picking up unacceptable noise levels and require
shielding, or you might need to run the device at a higher rate, or perhaps you need to
add an antialias filter to remove unwanted frequency components.

These effects act as obstacles between you and a precise, accurate measurement. To
overcome these obstacles, you need to experiment with different hardware and software
configurations. In other words, you need to perform multiple data acquisition trials.

 Anatomy of a Data Acquisition Experiment

1-5

Data Acquisition System
In this section...
“Overview” on page 1-6
“Data Acquisition Hardware” on page 1-8
“Sensors” on page 1-10
“Signal Conditioning” on page 1-13
“The Computer” on page 1-15
“Software” on page 1-15

Overview
Data Acquisition Toolbox, in conjunction with the MATLAB technical computing
environment, gives you the ability to measure and analyze physical phenomena. The
purpose of any data acquisition system is to provide you with the tools and resources
necessary to do so.

You can think of a data acquisition system as a collection of software and hardware that
connects you to the physical world. A typical data acquisition system consists of these
components.

Components Description
Data acquisition
hardware

At the heart of any data acquisition system lies the data
acquisition hardware. The main function of this hardware is to
convert analog signals to digital signals, and to convert digital
signals to analog signals.

Sensors and
actuators
(transducers)

Sensors and actuators can both be transducers. A transducer is a
device that converts input energy of one form into output energy
of another form. For example, a microphone is a sensor that
converts sound energy (in the form of pressure) into electrical
energy, while a loudspeaker is an actuator that converts
electrical energy into sound energy.

1 Introduction to Data Acquisition

1-6

https://www.mathworks.com/discovery/data-acquisition-system.html

Components Description
Signal conditioning
hardware

Sensor signals are often incompatible with data acquisition
hardware. To overcome this incompatibility, the signal must be
conditioned. For example, you might need to condition an input
signal by amplifying it or by removing unwanted frequency
components. Output signals might need conditioning as well.
However, only input signal conditioning is discussed in this topic.

Computer The computer provides a processor, a system clock, a bus to
transfer data, and memory and disk space to store data.

Software Data acquisition software allows you to exchange information
between the computer and the hardware. For example, typical
software allows you to configure the sampling rate of your board,
and acquire a predefined amount of data.

The following diagram illustrates the data acquisition components, and their relationships
to each other.

 Data Acquisition System

1-7

The figure depicts the two important features of a data acquisition system:

• Signals are input to a sensor, conditioned, converted into bits that a computer can
read, and analyzed to extract meaningful information.

For example, sound level data is acquired from a microphone, amplified, digitized by a
sound card, and stored in MATLAB workspace for subsequent analysis of frequency
content.

• Data from a computer is converted into an analog signal and output to an actuator.

For example, a vector of data in MATLAB workspace is converted to an analog signal
by a sound card and output to a loudspeaker.

Data Acquisition Hardware
Data acquisition hardware is either internal and installed directly into an expansion slot
inside your computer, or external and connected to your computer through an external
cable, which is typically a USB cable.

At the simplest level, data acquisition hardware is characterized by the subsystems it
possesses. A subsystem is a component of your data acquisition hardware that performs a
specialized task. Common subsystems include

• Analog input
• Analog output
• Digital input/output
• Counter/timer

Hardware devices that consist of multiple subsystems, such as the one depicted below,
are called multifunction boards.

1 Introduction to Data Acquisition

1-8

Analog Input Subsystems

Analog input subsystems convert real-world analog input signals from a sensor into bits
that can be read by your computer. Perhaps the most important of all the subsystems
commonly available, they are typically multichannel devices offering 12 or 16 bits of
resolution.

Analog input subsystems are also referred to as AI subsystems, A/D converters, or ADCs.
Analog input subsystems are discussed in detail here.

Analog Output Subsystems

Analog output subsystems convert digital data stored on your computer to a real-world
analog signal. These subsystems perform the inverse conversion of analog input
subsystems. Typical acquisition boards offer two output channels with 12 bits of
resolution, with special hardware available to support multiple channel analog output
operations.

Analog output subsystems are also referred to as AO subsystems, D/A converters, or
DACs.

Digital Input/Output Subsystems

Digital input/output (DIO) subsystems are designed to input and output digital values
(logic levels) to and from hardware. These values are typically handled either as single
bits or lines, or as a port, which typically consists of eight lines.

While most popular data acquisition cards include some digital I/O capability, it is usually
limited to simple operations, and special dedicated hardware is often necessary for
performing advanced digital I/O operations.

 Data Acquisition System

1-9

Counter/Timer Subsystems

Counter/timer (C/T) subsystems are used for event counting, frequency and period
measurement, and pulse train generation. Use the session-based interface to work with
the counter/timer subsystems.

Sensors
A sensor converts the physical phenomena of interest into a signal that is input into your
data acquisition hardware. There are two main types of sensors based on the output they
produce: digital sensors and analog sensors.

Digital sensors produce an output signal that is a digital representation of the input
signal, and has discrete values of magnitude measured at discrete times. A digital sensor
must output logic levels that are compatible with the digital receiver. Some standard logic
levels include transistor-transistor logic (TTL) and emitter-coupled logic (ECL). Examples
of digital sensors include switches and position encoders.

Analog sensors produce an output signal that is directly proportional to the input signal,
and is continuous in both magnitude and in time. Most physical variables such as
temperature, pressure, and acceleration are continuous in nature and are readily
measured with an analog sensor. For example, the temperature of an automobile cooling
system and the acceleration produced by a child on a swing all vary continuously.

The sensor you use depends on the phenomena you are measuring. Some common analog
sensors and the physical variables they measure are listed below.

Common Analog Sensors

Sensor Physical Variable
Accelerometer Acceleration
Microphone Pressure
Pressure gauge Pressure
Resistive temperature device (RTD) Temperature
Strain gauge Force
Thermocouple Temperature

1 Introduction to Data Acquisition

1-10

When choosing the best analog sensor to use, you must match the characteristics of the
physical variable you are measuring with the characteristics of the sensor. The two most
important sensor characteristics are:

• The sensor output
• The sensor bandwidth

Note You can use thermocouples and accelerometers without performing linear
conversions.

Sensor Output

The output from a sensor can be an analog signal or a digital signal, and the output
variable is usually a voltage although some sensors output current.
Current Signals

Current is often used to transmit signals in noisy environments because it is much less
affected by environmental noise. The full scale range of the current signal is often either
4-20 mA or 0-20 mA. A 4-20 mA signal has the advantage that even at minimum signal
value, there should be a detectable current flowing. The absence of this indicates a wiring
problem.

Before conversion by the analog input subsystem, the current signals are usually turned
into voltage signals by a current-sensing resistor. The resistor should be of high precision,
perhaps 0.03% or 0.01% depending on the resolution of your hardware. Additionally, the
voltage signal should match the signal to an input range of the analog input hardware.
For 4-20 mA signals, a 50 ohm resistor will give a voltage of 1 V for a 20 mA signal by
Ohm's law.
Voltage Signals

The most commonly interfaced signal is a voltage signal. For example, thermocouples,
strain gauges, and accelerometers all produce voltage signals. There are three major
aspects of a voltage signal that you need to consider:

• Amplitude

If the signal is smaller than a few millivolts, you might need to amplify it. If it is larger
than the maximum range of your analog input hardware (typically ±10 V), you will
have to divide the signal down using a resistor network.

 Data Acquisition System

1-11

The amplitude is related to the sensitivity (resolution) of your hardware. Refer to
Accuracy and Precision on page 1-30 for more information about hardware
sensitivity.

• Frequency

Whenever you acquire data, you should decide the highest frequency you want to
measure.

The highest frequency component of the signal determines how often you should
sample the input. If you have more than one input, but only one analog input
subsystem, then the overall sampling rate goes up in proportion to the number of
inputs. Higher frequencies might be present as noise, which you can remove by
filtering the signal before it is digitized.

If you sample the input signal at least twice as fast as the highest frequency
component, then that signal will be uniquely characterized. However, this rate might
not mimic the waveform very closely. For a rapidly varying signal, you might need a
sampling rate of roughly 10 to 20 times the highest frequency to get an accurate
picture of the waveform. For slowly varying signals, you need only consider the
minimum time for a significant change in the signal.

The frequency is related to the bandwidth of your measurement. Bandwidth is
discussed in “Sensor Bandwidth” on page 1-12.

• Duration

How long do you want to sample the signal for? If you are storing data to memory or
to a disk file, then the duration determines the storage resources required. The format
of the stored data also affects the amount of storage space required. For example, data
stored in ASCII format takes more space than data stored in binary format.

Sensor Bandwidth

In a real-world data acquisition experiment, the physical phenomena you are measuring
has expected limits. For example, the temperature of your automobile's cooling system
varies continuously between its low limit and high limit. The temperature limits, as well
as how rapidly the temperature varies between the limits, depends on several factors
including your driving habits, the weather, and the condition of the cooling system. The
expected limits might be readily approximated, but there are an infinite number of
possible temperatures that you can measure at a given time. As explained in Quantization
on page 1-21, these unlimited possibilities are mapped to a finite set of values by your
data acquisition hardware.

1 Introduction to Data Acquisition

1-12

The bandwidth is given by the range of frequencies present in the signal being measured.
You can also think of bandwidth as being related to the rate of change of the signal. A
slowly varying signal has a low bandwidth, while a rapidly varying signal has a high
bandwidth. To properly measure the physical phenomena of interest, the sensor
bandwidth must be compatible with the measurement bandwidth.

You might want to use sensors with the widest possible bandwidth when making any
physical measurement. This is the one way to ensure that the basic measurement system
is capable of responding linearly over the full range of interest. However, the wider the
bandwidth of the sensor, the more you must be concerned with eliminating sensor
response to unwanted frequency components.

Signal Conditioning
Sensor signals are often incompatible with data acquisition hardware. To overcome this
incompatibility, the sensor signal must be conditioned. The type of signal conditioning
required depends on the sensor you are using. For example, a signal might have a small
amplitude and require amplification, or it might contain unwanted frequency components
and require filtering. Common ways to condition signals include

• Amplification
• Filtering
• Electrical isolation
• Multiplexing
• Excitation source

Amplification

Low-level – less than around 100 millivolts – usually need to be amplified. High-level
signals might also require amplification depending on the input range of the analog input
subsystem.

For example, the output signal from a thermocouple is small and must be amplified before
it is digitized. Signal amplification allows you to reduce noise and to make use of the full
range of your hardware thereby increasing the resolution of the measurement.

 Data Acquisition System

1-13

Filtering

Filtering removes unwanted noise from the signal of interest. A noise filter is used on
slowly varying signals such as temperature to attenuate higher frequency signals that can
reduce the accuracy of your measurement.

Rapidly varying signals such as vibration often require a different type of filter known as
an antialiasing filter. An antialiasing filter removes undesirable higher frequencies that
might lead to erroneous measurements.

Electrical Isolation

If the signal of interest contains high-voltage transients that could damage the computer,
then the sensor signals should be electrically isolated from the computer for safety
purposes.

You can also use electrical isolation to make sure that the readings from the data
acquisition hardware are not affected by differences in ground potentials. For example,
when the hardware device and the sensor signal are each referenced to ground, problems
occur if there is a potential difference between the two grounds. This difference can lead
to a ground loop, which might lead to erroneous measurements. Using electrically
isolated signal conditioning modules eliminates the ground loop and ensures that the
signals are accurately represented.

Multiplexing

A common technique for measuring several signals with a single measuring device is
multiplexing.

Signal conditioning devices for analog signals often provide multiplexing for use with
slowly changing signals such as temperature. This is in addition to any built-in
multiplexing on the DAQ board. The A/D converter samples one channel, switches to the
next channel and samples it, switches to the next channel, and so on. Because the same
A/D converter is sampling many channels, the effective sampling rate of each individual
channel is inversely proportional to the number of channels sampled.

You must take care when using multiplexers so that the switched signal has sufficient
time to settle. Refer to Noise on page 1-34 for more information about settling time.

Excitation Source

Some sensors require an excitation source to operate. For example, strain gauges, and
resistive temperature devices (RTDs) require external voltage or current excitation.

1 Introduction to Data Acquisition

1-14

Signal conditioning modules for these sensors usually provide the necessary excitation.
RTD measurements are usually made with a current source that converts the variation in
resistance to a measurable voltage.

The Computer
The computer provides a processor, a system clock, a bus to transfer data, and memory
and disk space to store data.

The processor controls how fast data is accepted by the converter. The system clock
provides time information about the acquired data. Knowing that you recorded a sensor
reading is generally not enough. You also need to know when that measurement occurred.

Data is transferred from the hardware to system memory via dynamic memory access
(DMA) or interrupts. DMA is hardware controlled and therefore extremely fast. Interrupts
might be slow because of the latency time between when a board requests interrupt
servicing and when the computer responds. The maximum acquisition rate is also
determined by the computer's bus architecture. Refer to How Are Acquired Samples
Clocked? on page 1-24 for more information about DMA and interrupts.

Software
Regardless of the hardware you are using, you must send information to the hardware
and receive information from the hardware. You send configuration information to the
hardware such as the sampling rate, and receive information from the hardware such as
data, status messages, and error messages. You might also need to supply the hardware
with information so that you can integrate it with other hardware and with computer
resources. This information exchange is accomplished with software.

There are two kinds of software:

• Driver software
• Application software

For example, suppose you are using Data Acquisition Toolbox software with a National
Instruments board and its associated driver. The following diagram shows the relationship
between you, the driver software, the application software.

 Data Acquisition System

1-15

The diagram illustrates that you supply information to the hardware, and you receive
information from the hardware.

Driver Software

For a data acquisition device, there is associated driver software that you must use.
Driver software allows you to access and control your hardware. Among other things,
basic driver software allows you to

• Transfer data to and from the board
• Control the rate at which data is acquired
• Integrate the data acquisition hardware with computer resources such as processor

interrupts, DMA, and memory
• Integrate the data acquisition hardware with signal conditioning hardware
• Access multiple subsystems on a given data acquisition board
• Access multiple data acquisition boards

Application Software

Application software provides a convenient front end to the driver software. Basic
application software allows you to

1 Introduction to Data Acquisition

1-16

• Report relevant information such as the number of samples acquired
• Generate events
• Manage the data stored in computer memory
• Condition a signal
• Plot acquired data

MATLAB and Data Acquisition Toolbox software provide you with these capabilities, and
provide tools that let you perform analysis on the data.

 Data Acquisition System

1-17

Analog Input Subsystem
In this section...
“Function of the Analog Input Subsystem” on page 1-18
“Sampling” on page 1-19
“Quantization” on page 1-21
“Channel Configuration” on page 1-25
“Transferring Data from Hardware to System Memory” on page 1-27

Function of the Analog Input Subsystem

Note You cannot use the legacy interface on 64-bit MATLAB. See “Session-Based
Interface Workflow” on page 5-2 to acquire and generate data on a 64-bit MATLAB.

Many data acquisition hardware devices contain one or more subsystems that convert
(digitize) real-world sensor signals into numbers your computer can read. Such devices
are called analog input subsystems (AI subsystems, A/D converters, or ADCs). After the
real-world signal is digitized, you can analyze it, store it in system memory, or store it to a
disk file.

The function of the analog input subsystem is to sample and quantize the analog signal
using one or more channels. You can think of a channel as a path through which the
sensor signal travels. Typical analog input subsystems have eight or 16 input channels
available to you. After data is sampled and quantized, it must be transferred to system
memory.

Analog signals are continuous in time and in amplitude (within predefined limits).
Sampling takes a “snapshot” of the signal at discrete times, while quantization divides the
voltage (or current) value into discrete amplitudes. Sampling on page 1-19, quantization
on page 1-21, channel configuration on page 1-25, and transferring data on page 1-27
from hardware to system memory are discussed next.

1 Introduction to Data Acquisition

1-18

Sampling
Sampling takes a snapshot of the sensor signal at discrete times. For most applications,
the time interval between samples is kept constant (for example, sample every
millisecond) unless externally clocked.

For most digital converters, sampling is performed by a sample and hold (S/H) circuit. An
S/H circuit usually consists of a signal buffer followed by an electronic switch connected
to a capacitor. The operation of an S/H circuit follows these steps:

1 At a given sampling instant, the switch connects the buffer and capacitor to an input.
2 The capacitor is charged to the input voltage.
3 The charge is held until the A/D converter digitizes the signal.
4 For multiple channels connected (multiplexed) to one A/D converter, the previous

steps are repeated for each input channel.
5 The entire process is repeated for the next sampling instant.

A multiplexer, S/H circuit, and A/D converter are illustrated in the next section.

Hardware can be divided into two main categories based on how signals are sampled:
scanning hardware, which samples input signals sequentially, and simultaneous sample
and hold (SS/H) hardware, which samples all signals at the same time. These two types of
hardware are discussed below.

Scanning Hardware

Scanning hardware samples a single input signal, converts that signal to a digital value,
and then repeats the process for every input channel used. In other words, each input
channel is sampled sequentially. A scan occurs when each input in a group is sampled
once.

As shown below, most data acquisition devices have one A/D converter that is multiplexed
to multiple input channels.

 Analog Input Subsystem

1-19

Therefore, if you use multiple channels, those channels cannot be sampled simultaneously
and a time gap exists between consecutive sampled channels. This time gap is called the
channel skew. You can think of the channel skew as the time it takes the analog input
subsystem to sample a single channel.

Additionally, the maximum sampling rate your hardware is rated at typically applies for
one channel. Therefore, the maximum sampling rate per channel is given by the formula:

maximum sampling rate per channel
maximum board rate

numb
=

eer of channels scanned

Typically, you can achieve this maximum rate only under ideal conditions. In practice, the
sampling rate depends on several characteristics of the analog input subsystem including
the settling time and the gain, as well as the channel skew. The sample period and
channel skew for a multichannel configuration using scanning hardware is shown below.

1 Introduction to Data Acquisition

1-20

If you cannot tolerate channel skew in your application, you must use hardware that
allows simultaneous sampling of all channels. Simultaneous sample and hold hardware is
discussed in the next section.

Simultaneous Sample and Hold Hardware

Simultaneous sample and hold (SS/H) hardware samples all input signals at the same
time and holds the values until the A/D converter digitizes all the signals. For high-end
systems, there can be a separate A/D converter for each input channel.

For example, suppose you need to simultaneously measure the acceleration of multiple
accelerometers to determine the vibration of some device under test. To do this, you must
use SS/H hardware because it does not have a channel skew. In general, you might need
to use SS/H hardware if your sensor signal changes significantly in a time that is less than
the channel skew, or if you need to use a transfer function or perform a frequency domain
correlation.

The sample period for a multichannel configuration using SS/H hardware is shown below.
Note that there is no channel skew.

Quantization
As discussed in the previous section, sampling takes a snapshot of the input signal at an
instant of time. When the snapshot is taken, the sampled analog signal must be converted
from a voltage value to a binary number that the computer can read. The conversion from
an infinitely precise amplitude to a binary number is called quantization.

During quantization, the A/D converter uses a finite number of evenly spaced values to
represent the analog signal. The number of different values is determined by the number

 Analog Input Subsystem

1-21

of bits used for the conversion. Most modern converters use 12 or 16 bits. Typically, the
converter selects the digital value that is closest to the actual sampled value.

The figure below shows a 1 Hz sine wave quantized by a 3 bit A/D converter.

The number of quantized values is given by 23 = 8, the largest representable value is
given by 111 = 22 + 21 + 20 = 7.0, and the smallest representable value is given by 000 =
0.0.

Quantization Error

There is always some error associated with the quantization of a continuous signal.
Ideally, the maximum quantization error is ±0.5 least significant bits (LSBs), and over the
full input range, the average quantization error is zero.

As shown below, the quantization error for the previous sine wave is calculated by
subtracting the actual signal from the quantized signal.

1 Introduction to Data Acquisition

1-22

Input Range and Polarity

The input range of the analog input subsystem is the span of input values for which a
conversion is valid. You can change the input range by selecting a different gain value.
For example, National Instruments' AT-MIO-16E-1 board has eight gain values ranging
from 0.5 to 100. Many boards include a programmable gain amplifier that allows you to
change the device gain through software.

When an input signal exceeds the valid input range of the converter, an overrange
condition occurs. In this case, most devices saturate to the largest representable value,
and the converted data is almost definitely incorrect. The gain setting affects the
precision of your measurement — the higher (lower) the gain value, the lower (higher) the
precision. Refer to How Are Range, Gain, and Measurement Precision Related? on page 1-
33 for more information about how input range, gain, and precision are related to each
other.

An analog input subsystem can typically convert both unipolar signals and bipolar signals.
A unipolar signal contains only positive values and zero, while a bipolar signal contains
positive values, negative values, and zero.

Unipolar and bipolar signals are depicted below. Refer to the figure in “Quantization” on
page 1-21 for an example of a unipolar signal.

 Analog Input Subsystem

1-23

In many cases, the signal polarity is a fixed characteristic of the sensor and you must
configure the input range to match this polarity.

As you can see, it is crucial to understand the range of signals expected from your sensor
so that you can configure the input range of the analog input subsystem to maximize
resolution and minimize the chance of an overrange condition.

How Are Acquired Samples Clocked?

Samples are acquired from an analog input subsystem at a specific rate by a clock. Like
any timing system, data acquisition clocks are characterized their resolution and
accuracy. Timing resolution is defined as the smallest time interval that you can
accurately measure. The timing accuracy is affected by clock jitter. Jitter arises when a
clock produces slightly different values for a given time interval.

For any data acquisition system, there are typically three clock sources that you can use:
the onboard data acquisition clock, the computer clock, or an external clock. Data
Acquisition Toolbox software supports all of these clock sources, depending on the
requirements of your hardware.

Onboard Clock

The onboard clock is typically a timer chip on the hardware board that is programmed to
generate a pulse stream at the desired rate. The onboard clock generally has high
accuracy and low jitter compared to the computer clock. You should always use the
onboard clock when the sampling rate is high, and when you require a fixed time interval
between samples. The onboard clock is referred to as the internal clock in this guide.

1 Introduction to Data Acquisition

1-24

Computer Clock

The computer (PC) clock is used for boards that do not possess an onboard clock. The
computer clock is less accurate and has more jitter than the onboard clock, and is
generally limited to sampling rates below 500 Hz. The computer clock is referred to as
the software clock in this guide.

External Clock

An external clock is often used when the sampling rate is low and not constant. For
example, an external clock source is often used in automotive applications where samples
are acquired as a function of crank angle.

Channel Configuration
You can configure input channels in one of these two ways:

• Differential
• Single-ended

Your choice of input channel configuration might depend on whether the input signal is
floating or grounded.

A floating signal uses an isolated ground reference and is not connected to the building
ground. As a result, the input signal and hardware device are not connected to a common
reference, which can cause the input signal to exceed the valid range of the hardware
device. To circumvent this problem, you must connect the signal to the onboard ground of
the device. Examples of floating signal sources include ungrounded thermocouples and
battery devices.

A grounded signal is connected to the building ground. As a result, the input signal and
hardware device are connected to a common reference. Examples of grounded signal
sources include nonisolated instrument outputs and devices that are connected to the
building power system.

Note For more information about channel configuration, refer to your hardware
documentation.

 Analog Input Subsystem

1-25

Differential Inputs

When you configure your hardware for differential input, there are two signal wires
associated with each input signal — one for the input signal and one for the reference
(return) signal. The measurement is the difference in voltage between the two wires,
which helps reduce noise and any voltage that is common to both wires.

As shown below, the input signal is connected to the positive amplifier socket (labeled +)
and the return signal is connected to the negative amplifier socket (labeled -). The
amplifier has a third connector that allows these signals to be referenced to ground.

National Instruments recommends that you use differential inputs under any of these
conditions:

• The input signal is low level (less than 1 volt).
• The leads connecting the signal are greater than 10 feet.
• The input signal requires a separate ground-reference point or return signal.
• The signal leads travel through a noisy environment.

Single-Ended Inputs

When you configure your hardware for single-ended input, there is one signal wire
associated with each input signal, and each input signal is connected to the same ground.
Single-ended measurements are more susceptible to noise than differential measurements
because of differences in the signal paths.

As shown below, the input signal is connected to the positive amplifier socket (labeled +)
and the ground is connected to the negative amplifier socket (labeled -).

1 Introduction to Data Acquisition

1-26

National Instruments suggests that you can use single-ended inputs under any of these
conditions:

• The input signal is high level (greater than 1 volt).
• The leads connecting the signal are less than 10 feet.
• The input signal can share a common reference point with other signals.

You should use differential input connectors for any input signal that does not meet the
preceding conditions. You can configure many National Instruments boards for two
different types of single-ended connections:

• Referenced single-ended (RSE) connection

The RSE configuration is used for floating signal sources. In this case, the hardware
device itself provides the reference ground for the input signal.

• Nonreferenced single-ended (NRSE) connection

The NRSE input configuration is used for grounded signal sources. In this case, the
input signal provides its own reference ground and the hardware device should not
supply one.

Refer to your National Instruments hardware documentation for more information about
RSE and NRSE connections.

Transferring Data from Hardware to System Memory
The transfer of acquired data from the hardware to system memory follows these steps:

1 Acquired data is stored in the hardware's first-in first-out (FIFO) buffer.

 Analog Input Subsystem

1-27

2 Data is transferred from the FIFO buffer to system memory using interrupts or DMA.

These steps happen automatically. Typically, all that's required from you is some initial
configuration of the hardware device when it is installed.

FIFO Buffer

The FIFO buffer is used to temporarily store acquired data. The data is temporarily stored
until it can be transferred to system memory. The process of transferring data into and
out of an analog input FIFO buffer is given below:

1 The FIFO buffer stores newly acquired samples at a constant sampling rate.
2 Before the FIFO buffer is filled, the software starts removing the samples. For

example, an interrupt is generated when the FIFO is half full, and signals the
software to extract the samples as quickly as possible.

3 Because servicing interrupts or programming the DMA controller can take up to a
few milliseconds, additional data is stored in the FIFO for future retrieval. For a
larger FIFO buffer, longer latencies can be tolerated.

4 The samples are transferred to system memory via the system bus (for example, PCI
bus or AT bus). After the samples are transferred, the software is free to perform
other tasks until the next interrupt occurs. For example, the data can be processed or
saved to a disk file. As long as the average rates of storing and extracting data are
equal, acquired data will not be missed and your application should run smoothly.

Interrupts

The slowest but most common method to move acquired data to system memory is for the
board to generate an interrupt request (IRQ) signal. This signal can be generated when
one sample is acquired or when multiple samples are acquired. The process of
transferring data to system memory via interrupts is given below:

1 When data is ready for transfer, the CPU stops whatever it is doing and runs a special
interrupt handler routine that saves the current machine registers, and then sets
them to access the board.

2 The data is extracted from the board and placed into system memory.
3 The saved machine registers are restored, and the CPU returns to the original

interrupted process.

The actual data move is fairly quick, but there is a lot of overhead time spent saving,
setting up, and restoring the register information. Therefore, depending on your specific

1 Introduction to Data Acquisition

1-28

system, transferring data by interrupts might not be a good choice when the sampling
rate is greater than around 5 kHz.

DMA

Direct memory access (DMA) is a system whereby samples are automatically stored in
system memory while the processor does something else. The process of transferring data
via DMA is given below:

1 When data is ready for transfer, the board directs the system DMA controller to put it
into in system memory as soon as possible.

2 As soon as the CPU is able (which is usually very quickly), it stops interacting with
the data acquisition hardware and the DMA controller moves the data directly into
memory.

3 The DMA controller gets ready for the next sample by pointing to the next open
memory location.

4 The previous steps are repeated indefinitely, with data going to each open memory
location in a continuously circulating buffer. No interaction between the CPU and the
board is needed.

Your computer supports several different DMA channels. Depending on your application,
you can use one or more of these channels, For example, simultaneous input and output
with a sound card requires one DMA channel for the input and another DMA channel for
the output.

 Analog Input Subsystem

1-29

Making Quality Measurements
In this section...
“What Do You Measure?” on page 1-30
“Accuracy and Precision” on page 1-30
“Noise” on page 1-34
“Matching the Sensor Range and A/D Converter Range” on page 1-35
“How Fast Should a Signal Be Sampled?” on page 1-36

What Do You Measure?
For most data acquisition applications, you need to measure the signal produced by a
sensor at a specific rate.

In many cases, the sensor signal is a voltage level that is proportional to the physical
phenomena of interest (for example, temperature, pressure, or acceleration). If you are
measuring slowly changing (quasi-static) phenomena like temperature, a slow sampling
rate usually suffices. If you are measuring rapidly changing (dynamic) phenomena like
vibration or acoustic measurements, a fast sampling rate is required.

To make high-quality measurements, you should follow these rules:

• Maximize the precision and accuracy
• Minimize the noise
• Match the sensor range to the A/D range

Accuracy and Precision
Whenever you acquire measured data, you should make every effort to maximize its
accuracy and precision. The quality of your measurement depends on the accuracy and
precision of the entire data acquisition system, and can be limited by such factors as
board resolution or environmental noise.

In general terms, the accuracy of a measurement determines how close the measurement
comes to the true value. Therefore, it indicates the correctness of the result. The
precision of a measurement reflects how exactly the result is determined without

1 Introduction to Data Acquisition

1-30

reference to what the result means. The relative precision indicates the uncertainty in a
measurement as a fraction of the result.

For example, suppose you measure a table top with a meter stick and find its length to be
1.502 meters. This number indicates that the meter stick (and your eyes) can resolve
distances down to at least a millimeter. Under most circumstances, this is considered to
be a fairly precise measurement with a relative precision of around 1/1500. However,
suppose you perform the measurement again and obtain a result of 1.510 meters. After
careful consideration, you discover that your initial technique for reading the meter stick
was faulty because you did not read it from directly above. Therefore, the first
measurement was not accurate.

Precision and accuracy are illustrated below.

For analog input subsystems, accuracy is usually limited by calibration errors while
precision is usually limited by the A/D converter. Accuracy and precision are discussed in
more detail below.

 Making Quality Measurements

1-31

Accuracy

Accuracy is defined as the agreement between a measured quantity and the true value of
that quantity. Every component that appears in the analog signal path affects system
accuracy and performance. The overall system accuracy is given by the component with
the worst accuracy.

For data acquisition hardware, accuracy is often expressed as a percent or a fraction of
the least significant bit (LSB). Under ideal circumstances, board accuracy is typically
±0.5 LSB. Therefore, a 12 bit converter has only 11 usable bits.

Many boards include a programmable gain amplifier, which is located just before the
converter input. To prevent system accuracy from being degraded, the accuracy and
linearity of the gain must be better than that of the A/D converter. The specified accuracy
of a board is also affected by the sampling rate and the settling time of the amplifier. The
settling time is defined as the time required for the instrumentation amplifier to settle to
a specified accuracy. To maintain full accuracy, the amplifier output must settle to a level
given by the magnitude of 0.5 LSB before the next conversion, and is on the order of
several tenths of a millisecond for most boards.

Settling time is a function of sampling rate and gain value. High rate, high gain
configurations require longer settling times while low rate, low gain configurations
require shorter settling times.

Precision

The number of bits used to represent an analog signal determines the precision
(resolution) of the device. The more bits provided by your board, the more precise your
measurement will be. A high precision, high resolution device divides the input range into
more divisions thereby allowing a smaller detectable voltage value. A low precision, low
resolution device divides the input range into fewer divisions thereby increasing the
detectable voltage value.

The overall precision of your data acquisition system is usually determined by the A/D
converter, and is specified by the number of bits used to represent the analog signal. Most
boards use 12 or 16 bits. The precision of your measurement is given by:

precision number of bits
= one part in 2

The precision in volts is given by:

1 Introduction to Data Acquisition

1-32

precision
voltage range

number of bits
=

2

For example, if you are using a 12 bit A/D converter configured for a 10 volt range, then

precision
volts

=

10

2
12

This means that the converter can detect voltage differences at the level of 0.00244 volts
(2.44 mV).

How Are Range, Gain, and Measurement Precision Related?

When you configure the input range and gain of your analog input subsystem, the end
result should maximize the measurement resolution and minimize the chance of an
overrange condition. The actual input range is given by the formula:

actual input range
input range

gain

=

The relationship between gain, actual input range, and precision for a unipolar and
bipolar signal having an input range of 10 V is shown below.

Relationship Between Input Range, Gain, and Precision

Input Range Gain Actual Input Range Precision (12 Bit
A/D)

0 to 10 V 1.0 0 to 10 V 2.44 mV
2.0 0 to 5 V 1.22 mV
5.0 0 to 2 V 0.488 mV
10.0 0 to 1 V 0.244 mV

-5 to 5 V 0.5 -10 to 10 V 4.88 mV
1.0 -5 to 5 V 2.44 mV
2.0 -2.5 to 2.5 V 1.22 mV
5.0 -1.0 to 1.0 V 0.488 mV
10.0 -0.5 to 0.5 V 0.244 mV

 Making Quality Measurements

1-33

As shown in the table, the gain affects the precision of your measurement. If you select a
gain that decreases the actual input range, then the precision increases. Conversely, if
you select a gain that increases the actual input range, then the precision decreases. This
is because the actual input range varies but the number of bits used by the A/D converter
remains fixed.

Note With Data Acquisition Toolbox software, you do not have to specify the range and
gain. Instead, you simply specify the actual input range desired.

Noise
Noise is considered to be any measurement that is not part of the phenomena of interest.
Noise can be generated within the electrical components of the input amplifier (internal
noise), or it can be added to the signal as it travels down the input wires to the amplifier
(external noise). Techniques that you can use to reduce the effects of noise are described
below.

Removing Internal Noise

Internal noise arises from thermal effects in the amplifier. Amplifiers typically generate a
few microvolts of internal noise, which limits the resolution of the signal to this level. The
amount of noise added to the signal depends on the bandwidth of the input amplifier.

To reduce internal noise, you should select an amplifier with a bandwidth that closely
matches the bandwidth of the input signal.

Removing External Noise

External noise arises from many sources. For example, many data acquisition experiments
are subject to 60 Hz noise generated by AC power circuits. This type of noise is referred
to as pick-up or hum, and appears as a sinusoidal interference signal in the measurement
circuit. Another common interference source is fluorescent lighting. These lights generate
an arc at twice the power line frequency (120 Hz).

Noise is added to the acquisition circuit from these external sources because the signal
leads act as aerials picking up environmental electrical activity. Much of this noise is
common to both signal wires. To remove most of this common-mode voltage, you should

• Configure the input channels in differential mode. Refer to Channel Configuration on
page 1-25 for more information about channel configuration.

1 Introduction to Data Acquisition

1-34

• Use signal wires that are twisted together rather than separate.
• Keep the signal wires as short as possible.
• Keep the signal wires as far away as possible from environmental electrical activity.

Filtering

Filtering also reduces signal noise. For many data acquisition applications, a low-pass
filter is beneficial. As the name suggests, a low-pass filter passes the lower frequency
components but attenuates the higher frequency components. The cut-off frequency of
the filter must be compatible with the frequencies present in the signal of interest and the
sampling rate used for the A/D conversion.

A low-pass filter that's used to prevent higher frequencies from introducing distortion into
the digitized signal is known as an antialiasing filter if the cut-off occurs at the Nyquist
frequency. That is, the filter removes frequencies greater than one-half the sampling
frequency. These filters generally have a sharper cut-off than the normal low-pass filter
used to condition a signal. Antialiasing filters are specified according to the sampling rate
of the system and there must be one filter per input signal.

Matching the Sensor Range and A/D Converter Range
When sensor data is digitized by an A/D converter, you must be aware of these two issues:

• The expected range of the data produced by your sensor. This range depends on the
physical phenomena you are measuring and the output range of the sensor.

• The range of your A/D converter. For many devices, the hardware range is specified by
the gain and polarity.

You should select the sensor and hardware ranges such that the maximum precision is
obtained, and the full dynamic range of the input signal is covered.

For example, suppose you are using a microphone with a dynamic range of 20 dB to 140
dB and an output sensitivity of 50 mV/Pa. If you are measuring street noise in your
application, then you might expect that the sound level never exceeds 80 dB, which
corresponds to a sound pressure magnitude of 200 mPa and a voltage output from the
microphone of 10 mV. Under these conditions, you should set the input range of your data
acquisition card for a maximum signal amplitude of 10 mV, or a little more.

 Making Quality Measurements

1-35

How Fast Should a Signal Be Sampled?
Whenever a continuous signal is sampled, some information is lost. The key objective is to
sample at a rate such that the signal of interest is well characterized and the amount of
information lost is minimized.

If you sample at a rate that is too slow, then signal aliasing can occur. Aliasing can occur
for both rapidly varying signals and slowly varying signals. For example, suppose you are
measuring temperature once a minute. If your acquisition system is picking up a 60-Hz
hum from an AC power supply, then that hum will appear as constant noise level if you
are sampling at 30 Hz.

Aliasing occurs when the sampled signal contains frequency components greater than
one-half the sampling rate. The frequency components could originate from the signal of
interest in which case you are undersampling and should increase the sampling rate. The
frequency components could also originate from noise in which case you might need to
condition the signal using a filter. The rule used to prevent aliasing is given by the
Nyquist theorem, which states that

• An analog signal can be uniquely reconstructed, without error, from samples taken at
equal time intervals.

• The sampling rate must be equal to or greater than twice the highest frequency
component in the analog signal. A frequency of one-half the sampling rate is called the
Nyquist frequency.

However, if your input signal is corrupted by noise, then aliasing can still occur.

For example, suppose you configure your A/D converter to sample at a rate of 4 samples
per second (4 S/s or 4 Hz), and the signal of interest is a 1 Hz sine wave. Because the
signal frequency is one-fourth the sampling rate, then according to the Nyquist theorem,
it should be completely characterized. However, if a 5 Hz sine wave is also present, then
these two signals cannot be distinguished. In other words, the 1 Hz sine wave produces
the same samples as the 5 Hz sine wave when the sampling rate is 4 S/s. This situation is
shown below.

1 Introduction to Data Acquisition

1-36

In a real-world data acquisition environment, you might need to condition the signal by
filtering out the high frequency components.

Even though the samples appear to represent a sine wave with a frequency of one-fourth
the sampling rate, the actual signal could be any sine wave with a frequency of:

n sampling rate±()¥ ()0 25.

where n is zero or any positive integer. For this example, the actual signal could be at a
frequency of 3 Hz, 5 Hz, 7 Hz, 9 Hz, and so on. The relationship 0.25 x (Sampling rate) is
called the alias of a signal that may be at another frequency. In other words, aliasing
occurs when one frequency assumes the identity of another frequency.

If you sample the input signal at least twice as fast as the highest frequency component,
then that signal might be uniquely characterized, but this rate would not mimic the
waveform very closely. As shown below, to get an accurate picture of the waveform, you
need a sampling rate of roughly 10 to 20 times the highest frequency.

 Making Quality Measurements

1-37

As shown in the top figure, the low sampling rate produces a sampled signal that appears
to be a triangular waveform. As shown in the bottom figure, a higher fidelity sampled
signal is produced when the sampling rate is higher. In the latter case, the sampled signal
actually looks like a sine wave.

How Can Aliasing Be Eliminated?

The primary considerations involved in antialiasing are the sampling rate of the A/D
converter and the frequencies present in the sampled data. To eliminate aliasing, you
must

• Establish the useful bandwidth of the measurement.
• Select a sensor with sufficient bandwidth.
• Select a low-pass antialiasing analog filter that can eliminate all frequencies exceeding

this bandwidth.
• Sample the data at a rate at least twice that of the filter's upper cutoff frequency.

1 Introduction to Data Acquisition

1-38

Selected Bibliography
[1] Transducer Interfacing Handbook — A Guide to Analog Signal Conditioning, edited by

Daniel H. Sheingold; Analog Devices Inc., Norwood, MA, 1980.

[2] Bentley, John P., Principles of Measurement Systems, Second Edition; Longman
Scientific and Technical, Harlow, Essex, UK, 1988.

[3] Bevington, Philip R., Data Reduction and Error Analysis for the Physical Sciences;
McGraw-Hill, New York, NY, 1969.

[4] Carr, Joseph J., Sensors; Prompt Publications, Indianapolis, IN, 1997.

[5] The Measurement, Instrumentation, and Sensors Handbook, edited by John G.
Webster; CRC Press, Boca Raton, FL, 1999.

[6] PCI-MIO E Series User Manual, January 1997 Edition; Part Number 320945B-01,
National Instruments, Austin, TX, 1997.

 Selected Bibliography

1-39

Using Data Acquisition Toolbox
Software

This section provides the information you need to get started with Data Acquisition
Toolbox software. The sections are as follows.

• “Installation Information” on page 2-2
• “Access Your Hardware” on page 2-4
• “Examine Your Hardware Resources” on page 2-9

2

Installation Information

In this section...
“Prerequisites” on page 2-2
“Toolbox Installation” on page 2-2
“Hardware and Driver Installation” on page 2-3

Prerequisites
To acquire live, measured data into the MATLAB workspace, or to output data from the
MATLAB software, you must install these components:

• MATLAB
• Data Acquisition Toolbox
• A supported data acquisition device (see https://www.mathworks.com/hardware-

support/data-acquistion-software.html)
• Software such as drivers and support libraries, as required by your data acquisition

device

Toolbox Installation
To determine if Data Acquisition Toolbox software is installed on your system, type

ver

at the MATLAB prompt. The MATLAB Command Window lists information about the
software versions you are running, including installed add-on products and their version
numbers. Check the list to see if Data Acquisition Toolbox product appears. For
information about installing the toolbox, see the MATLAB Installation documentation.

If you experience installation difficulties and have Internet access, look for the license
manager and installation information at the MathWorks Web site (https://
www.mathworks.com).

2 Using Data Acquisition Toolbox Software

2-2

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com
https://www.mathworks.com

Hardware and Driver Installation
Installation of your hardware device, hardware drivers, and any other device-specific
software is described in the documentation provided by your hardware vendor.

Device drivers are available as Support Packages from the Add-Ons menu. See “Install
Hardware Support Package for Device Driver” on page 6-3.

 Installation Information

2-3

Access Your Hardware
In this section...
“Connect to Your Hardware” on page 2-4
“Acquire Audio Data” on page 2-4
“Generate Audio Data” on page 2-5
“Acquire and Generate Digital Data” on page 2-6

Connect to Your Hardware
Perhaps the most effective way to get started with Data Acquisition Toolbox software is to
connect to your hardware, and input or output data.

Each example illustrates a typical data acquisition session. The data acquisition session
comprises all the steps you are likely to take when acquiring or outputting data using a
supported hardware device. You should keep these steps in mind when constructing your
own data acquisition applications.

Note that the analog input and analog output examples use a sound card, while the digital
I/O example uses a National Instruments board. If you are using a different supported
hardware device, you should modify the adaptor name and the device ID supplied to the
creation function as needed.

If you want detailed information about any functions that are used, refer to the list of
functions. If you want detailed information about any properties that are used, refer to
the list of properties.

Note If you are connecting to a CompactDAQ devices or a counter/timer device, see
“Counter and Timer Input and Output”.

Acquire Audio Data
If you have a sound card installed, you can run the following example, which acquires 1
second of data an audio input hardware channels, and then plots the acquired data.

You should modify this example to suit your specific application needs.

2 Using Data Acquisition Toolbox Software

2-4

1 Create a session object — Create the session object s for a sound card.

s = daq.createSession('directsound');
2 Identify the system devices and their IDs for audio input and output.

daq.getDevices

Data acquisition devices:

index Vendor Device ID Description
----- ----------- --------- --
1 directsound Audio0 DirectSound Primary Sound Capture Driver
2 directsound Audio1 DirectSound HP 4120 Microphone (HP 4120)
3 directsound Audio2 DirectSound Primary Sound Driver
4 directsound Audio3 DirectSound Speakers (Realtek High Definition Audio)
5 directsound Audio4 DirectSound HP 4120 (HP 4120)

3 Add channel — Add an analog input channel to s, using the microphone device.

addAudioInputChannel(s,'audio1','1','audio');

To display a summary of the session, type:
s

Data acquisition session using DirectSound hardware:
 Will run for 1 second (44100 scans) at 44100 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ------------- ----
 1 audi Audio1 1 Audio -1.0 to +1.0

4 Acquire data — Start the acquisition. When all the data is acquired, it is assigned to
data.

data = startForeground(s);
plot(data)

5 Clean up — When you no longer need s, you should remove it from memory.

delete(s)
clear s

Generate Audio Data
If you have a sound card installed, you can run the following example, which outputs 1
second of data to two analog output hardware channels.

You should modify this example to suit your specific application needs.

 Access Your Hardware

2-5

1 Create a session object — Create the session object s for a sound card.

s = daq.createSession('directsound');
2 Add channel — Add an audio output channel to session s. This example uses the

device ID audio4 for the speakers from the previous example.

addAudioOutputChannel(s,'audio4','1','audio');

To display a summary of the session, type:
s

Data acquisition session using DirectSound hardware:
 No data queued. Will run at 44100 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ------------- ----
 1 audo Audio4 1 Audio -1.0 to +1.0

3 Output data — Create 1 second of output data, and queue the data for output from
the device. You must queue one column of data for each hardware channel.

data = sin(linspace(0,2*pi*500,44100)');
queueOutputData(s,data)

Start the output. When all the data is output, s stops generating.

startForeground(s)
4 Clean up — When you no longer need s, you should remove it from memory and

from the MATLAB workspace.

delete(s)
clear s

Acquire and Generate Digital Data
If you have a supported National Instruments board with at least two digital I/O ports,
you can run the following example, which writes and reads digital values.

You should modify this example to suit your specific application needs. Adjust the example
if the ports on your device do not support the input/output directions specified here.

1 Create a session object — Create the data acquisition session s for a National
Instruments board with hardware device ID cDAQ1Mod1.

2 Using Data Acquisition Toolbox Software

2-6

s = daq.createSession('ni');
2 Add digital input channels — Add two lines from port 0 to s, and configure them

for input.

addDigitalChannel(s,'cDAQ1Mod1','Port0/Line0:1','InputOnly');
3 Add digital output lines — Add two lines from port 0 to s, and configure them for

output.

addDigitalChannel(s,'cDAQ1Mod1','Port0/Line2:3','OutputOnly');

To display a summary of the session, type:
s

Data acquisition session using National Instruments hardware:
 No data queued. Will run at 1000 scans/second.
 Number of channels: 4
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ----------- --------------- ----- ----
 1 dio cDAQ1Mod1 port0/line0 InputOnly n/a
 2 dio cDAQ1Mod1 port0/line1 InputOnly n/a
 3 dio cDAQ1Mod1 port0/line2 OutputOnly n/a
 4 dio cDAQ1Mod1 port0/line3 OutputOnly n/a

4 Add clock and trigger — To synchronize operations, add a clock and trigger
connection.
addClockConnection(s,'External','cDAQ1/PFI0','ScanClock')
addTriggerConnection(s,'External','cDAQ1/PFI1','StartTrigger')

Note Digital line values are usually not transferred at a specific rate. Although some
specialized boards support clocked I/O.

5 Queue output data and start device — Create an array of output values, and write
the values to the digital I/O subsystem. Note that reading and writing digital I/O line
values typically does not require that you configure specific property values.

queueOutputData(s,round(rand(4000,2)));
gval = startForeground(s);

6 Display input — To read only the input lines, type:

gval
7 Clean up — When you no longer need s, you should remove it from memory and

from the MATLAB workspace.

 Access Your Hardware

2-7

delete(s)
clear s

2 Using Data Acquisition Toolbox Software

2-8

Examine Your Hardware Resources
In this section...
“Use the daq.getDevices Function” on page 2-9
“General Toolbox Information” on page 2-9

Use the daq.getDevices Function
You can examine the data acquisition hardware resources visible to the toolbox with the
daq.getDevices function. Hardware resources include installed boards, hardware
drivers, and adaptors.

General Toolbox Information
To display general information about the toolbox, enter:

daqhelp

 Examine Your Hardware Resources

2-9

Introduction to the Session-Based
Interface

• “Data Acquisition Session” on page 3-2
• “Getting Help” on page 3-4

3

Data Acquisition Session
The toolbox interface uses a data acquisition session object that allows you to
communicate easily with devices from National Instruments, Measurement Computing™,
Analog Devices®, Microsoft Windows sound cards, and Digilent®. You create a session
using the daq.createSession function. A session represents one or more channels that
you specify on data acquisition devices. You configure sessions to acquire or generate
data at a specific rate, based on the specified number of scans or the duration of the
operation.

For an explanation of how this communication works, see Data Acquisition System on
page 1-6. The relationship between you, the application software, the driver software, the
chassis, and the devices is shown here.

3 Introduction to the Session-Based Interface

3-2

For more information about creating sessions, see “Create a Session” on page 5-8.

See Also

More About
• “Limitations by Vendor” on page B-2

 See Also

3-3

Getting Help
In this section...
“Command-Line Help” on page 3-4
“Online Help” on page 3-4
“Session-Based Interface Examples” on page 3-4

Command-Line Help
To access command-line help for the session-based interface, type:

help sessionbasedinterface

To access command-line help for a class or method, type:

help daq.class_name
help daq.class_name.method_name

Online Help
To access online help for the session-based interface via the command line, type:

doc daq

You can also select Help > Product Help from the menu bar.

To access online help for a class or method, type:

doc daq.class_name
doc daq.class_name.method_name

The help browser displays the reference page for the class. You can also select Help >
Function Browser from the menu bar.

Session-Based Interface Examples
To access the session-based interface examples in the help browser via the command line,
type:

3 Introduction to the Session-Based Interface

3-4

demo('toolbox','data acquisition')

 Getting Help

3-5

Session-Based Interface Workflows

• “Session Creation Workflow” on page 4-2
• “Analog Input and Output Workflow” on page 4-5
• “Digital Input and Output Workflow” on page 4-7
• “Counter and Timer Input and Output Workflow” on page 4-9
• “Multichannel Audio Input and Output Workflow” on page 4-10
• “Periodic Waveform Generation Workflow” on page 4-11

4

Session Creation Workflow
This workflow helps you create a data acquisition or generation session.

Once you create a session, you can use this workflow to acquire or generate data.

4 Session-Based Interface Workflows

4-2

See Also
Functions
addAnalogInputChannel | addAnalogOutputChannel | addAudioInputChannel |
addAudioOutputChannel | addCounterInputChannel |
addCounterOutputChannel | addDigitalChannel | addlistener |

 See Also

4-3

daq.createSession | daq.getDevices | daq.getVendors | queueOutputData |
startBackground | startForeground

Properties
AutoSyncDSA | DurationInSeconds | EnhancedAliasRejectionEnable | IsContinuous |
NumberOfScans | Rate | RateLimit | ScansAcquired | ScansOutputByHardware |
ScansQueued

Related Examples
• “Transition Your Code to Session-Based Interface” on page 14-2

4 Session-Based Interface Workflows

4-4

Analog Input and Output Workflow
Once you create a session on page 4-2, use this workflow to set up analog channels and
acquire and generate data.

 Analog Input and Output Workflow

4-5

See Also
Functions
addAnalogInputChannel | addAnalogOutputChannel | addlistener |
daq.createSession | daq.getDevices | inputSingleScan | outputSingleScan |
queueOutputData | startBackground | startForeground

4 Session-Based Interface Workflows

4-6

Digital Input and Output Workflow
Once you create a session on page 4-2, use this workflow to set up your digital channels
and acquire and generate data.

 Digital Input and Output Workflow

4-7

See Also
Functions
addDigitalChannel | addlistener | daq.createSession | daq.getDevices |
inputSingleScan | outputSingleScan | queueOutputData | startBackground |
startForeground

4 Session-Based Interface Workflows

4-8

Counter and Timer Input and Output Workflow
Once you create a session on page 4-2, use this workflow to set up your counter and timer
channels and acquire and generate counts.

See Also
Functions
addCounterInputChannel | addCounterOutputChannel | daq.createSession |
daq.getDevices | inputSingleScan | outputSingleScan | startBackground |
startForeground

 Counter and Timer Input and Output Workflow

4-9

Multichannel Audio Input and Output Workflow
Once you create a session on page 4-2, use this workflow to set up your counter and timer
channels and acquire and generate multichannel audio.

See Also
Functions
addAudioInputChannel | addAudioOutputChannel | daq.createSession |
daq.getDevices | queueOutputData | startBackground | startForeground

4 Session-Based Interface Workflows

4-10

Periodic Waveform Generation Workflow
Once you create a session on page 4-2, use this workflow to create waveform generation
channels and acquire waveforms generated on a Digilent Analog Discovery™ device
function generation channels.

See Also
Functions
StartForeground | addAnalogInputChannel | addFunctionGeneratorChannel |
daq.createSession | daq.getDevices

Properties
DurationInSeconds | Rate

 Periodic Waveform Generation Workflow

4-11

More About
• “Waveform Types” on page 11-6

4 Session-Based Interface Workflows

4-12

Using the Session-Based Interface

• “Session-Based Interface Workflow” on page 5-2
• “Digital Input and Output” on page 5-5
• “Discover Hardware Devices” on page 5-6
• “Create a Session” on page 5-8

5

Session-Based Interface Workflow
In this section...
“Working with Sessions” on page 5-2
“Session-Based Interface and Data Acquisition Toolbox” on page 5-4

Working with Sessions
Use the session object to communicate with data acquisition devices, such as National
Instruments devices including a CompactDAQ chassis. The following diagram shows the
general workflow for session operations.

5 Using the Session-Based Interface

5-2

Use the daq.createSession function to create a data acquisitions session. See
“Session-Based Interface Workflow” on page 5-2 for more information.

 Session-Based Interface Workflow

5-3

You can also synchronize operations within the session. See “Synchronization” on page
13-2 for more information.

Session-Based Interface and Data Acquisition Toolbox
Data Acquisition Toolbox and the MATLAB technical computing environment use the
session-based interface to communicate with National Instruments devices, including a
CompactDAQ chassis. You can operate in the foreground, where the operation blocks
MATLAB until complete, or in the background, where MATLAB continues to run
additional MATLAB commands in parallel with the hardware operation. See Session
Architecture on page 4-2 for more information.

You can create a session with both analog input and analog output channels and configure
acquisition and generation simultaneously. See “Acquire Data and Generate Signals
Simultaneously” on page 7-31 for more information.

See Also

Related Examples
• “Transition Your Code to Session-Based Interface” on page 14-2

5 Using the Session-Based Interface

5-4

Digital Input and Output
Digital subsystems transfer digital or logical values in bits via digital lines. You can
perform clocked and non-clocked digital operations using the session-based interface in
the Data Acquisition Toolbox.

For more information see “Digital Subsystem Channels” on page 9-2.

 Digital Input and Output

5-5

Discover Hardware Devices
Discover the supported data acquisition devices on your system.

Step 1. Discover hardware devices.
d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- ------------------------------------
1 ni cDAQ1Mod1 National Instruments NI 9205
2 ni cDAQ2Mod1 National Instruments NI 9201
3 ni Dev1 National Instruments USB-6211
4 ni PXI1Slot2 National Instruments PXI-4461

Click the device ID for detailed device information.

Step 2. Get detailed device information.
d(3)

ans =

ni: National Instruments USB-6211 (Device ID: 'Dev1')
 Analog input subsystem supports:
 4 ranges supported
 Rates from 0.1 to 250000.0 scans/sec
 16 channels ('ai0' - 'ai15')
 'Voltage' measurement type

 Analog output subsystem supports:
 -10 to +10 Volts range
 Rates from 0.1 to 250000.0 scans/sec
 2 channels ('ao0','ao1')
 'Voltage' measurement type

 Digital subsystem supports:
 8 channels ('port0/line0' - 'port1/line3')
 'InputOnly','OutputOnly' measurement types

 Counter input subsystem supports:

5 Using the Session-Based Interface

5-6

 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'PulseGeneration' measurement type

Properties, Methods, Events

Detailed device information includes:

• Subsystem type
• Rate
• Number of available channels
• Measurement type

 Discover Hardware Devices

5-7

Create a Session
This example shows how to create a session and add channels to the session and use the
session to acquire and generate data. You can also configure session and channel
properties needed for your operation.

Step 1. Create a data acquisition session.

 s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added.

Once you create a session object, add channels using addAnalogInputChannel,
addAnalogOutputChannel, addCounterInputChannel, and
addCounterOutputChannel functions.

Step 2. Configure session properties.

Change the sessions duration to 10 seconds:

s.DurationInSeconds = 10

s =

Data acquisition session using National Instruments hardware:
 Will run for 10 seconds (10000 scans) at 1000 scans/second.
 No channels have been added.

Step 3. Add channels to the session.

Add an analog input channel to the session:

s.addAnalogInputChannel('cDAQ1Mod1','ai0', 'Voltage')

ans =

Data acquisition session using National Instruments hardware:
 Will run for 10 seconds (10000 scans) at 1000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts

5 Using the Session-Based Interface

5-8

Step 4. Change channel properties.

Examine the channel properties.

s.Channels

ans =

Data acquisition analog input voltage channel 'ai0' on device 'cDAQ1Mod1':

 Coupling: DC
 TerminalConfig: Differential
 Range: -10 to +10 Volts
 Name: empty
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Voltage'

Change the TerminalConfig property to 'SingleEnded'.

s.Channels.TerminalConfig = 'SingleEnded'

s =

Data acquisition session using National Instruments hardware:
 Will run for 10 seconds (10000 scans) at 1000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ------------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (SingleEnd) -10 to +10 Volts

See Also

Related Examples
• “Acquire Counter Input Data” on page 8-3
• “Generate Pulse Data on a Counter Channel” on page 8-7

More About
• “Analog Input and Output”
• “Transition Your Code to Session-Based Interface” on page 14-2

 See Also

5-9

Support Package Installer

• “Data Acquisition Toolbox Supported Hardware” on page 6-2
• “Install Hardware Support Package for Device Driver” on page 6-3

6

Data Acquisition Toolbox Supported Hardware

As of this release, Data Acquisition Toolbox supports the following hardware.

Support Package Vendor Earliest Release
Available

Last Release
Available

Analog Devices ADALM
Hardware

Analog Devices R2015b Current

Digilent Analog Discovery
Hardware on page 6-3

Digilent R2014a Current

Measurement Computing
Hardware on page 6-3

Measurement
Computing

R2017a Current

National Instruments NI-
DAQmx Devices on page 6-
3

National Instruments R2014a Current

Windows Sound Cards on
page 6-3

Microsoft R2014a Current

For a complete list of supported hardware, see Hardware Support.

See Also

More About
• “Limitations by Vendor” on page B-2

6 Support Package Installer

6-2

matlab: matlab.addons.supportpackage.internal.explorer.showSupportPackagesForBaseProducts('DA','tripwire');
https://www.mathworks.com/hardware-support.html?fq=product:DA

Install Hardware Support Package for Device Driver

In this section...
“Install Support Packages” on page 6-3
“Update or Uninstall Support Packages” on page 6-3

To communicate with a data acquisition device, you need to install the required driver on
your system. The drivers are available as support packages for the following vendors:

• Analog Devices (ADALM1000)
• Digilent (Analog Discovery)
• Measurement Computing
• Microsoft (Windows Sound cards)
• National Instruments (NI-DAQmx)

Install Support Packages
To install the Support Package for the required driver:

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

2 In the Add-On Explorer, scroll to Refine by Type and check Hardware Support
Packages.

3 Under Refine by Vender, check the vendor of your device. The Add-On Explorer
displays support packages for that vendor. Click the support package for your device
driver.

Update or Uninstall Support Packages
To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage Add-
Ons.

To update existing support packages:

 Install Hardware Support Package for Device Driver

6-3

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for
Updates > Hardware Support Packages.

See Also

More About
• “Get Add-Ons” (MATLAB)

6 Support Package Installer

6-4

Session Based Analog Input and
Output

• “Acquire Data in the Foreground” on page 7-2
• “Acquire Data from Multiple Channels” on page 7-4
• “Acquire Data in the Background” on page 7-6
• “Acquire Data from an Accelerometer” on page 7-8
• “Acquire Bridge Measurements” on page 7-12
• “Acquire Sound Pressure Data” on page 7-14
• “Acquire IEPE Data” on page 7-17
• “Getting Started Acquiring Data with Digilent® Analog Discovery™” on page 7-19
• “Generate Signals in the Foreground” on page 7-22
• “Generate Signals Using Multiple Channels” on page 7-24
• “Generate Signals in the Background” on page 7-26
• “Generate Signals in the Background Continuously” on page 7-27
• “Getting Started Generating Data with Digilent® Analog Discovery™” on page 7-29
• “Acquire Data and Generate Signals Simultaneously” on page 7-31
• “Acquire Data with the Analog Input Recorder” on page 7-33

7

Acquire Data in the Foreground
This example shows how to acquire voltage data from an NI 9205 device with ID
cDAQ1Mod1.

Create a session object and save it to the variable, s:

s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 Operation starts immediately.
 No channels have been added.

By default, the acquisition is configured to run for a duration of 1 second to acquire 1000
scans, at the rate of 1000 scans per second.

Change the duration of the acquisition to 2 seconds:
s.DurationInSeconds = 2.0

s =

Data acquisition session using National Instruments hardware:
 Will run for 2 seconds (2000 scans) at 1000 scans/second.
 No channels have been added.

The acquisition now runs for 2 seconds acquiring 2000 scans at the default rate.

Add an analog input 'Voltage' channel named 'ai0':
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage')

ans =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 Operation starts immediately.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts

For NI devices, use either a terminal name, like 'ai2', or a numeric equivalent like 2 for
the channel ID.

Acquire the data and store it in the variable, data and plot it:

7 Session Based Analog Input and Output

7-2

data = startForeground(s);
plot (data)

Change the number of scans to 4096.
s.NumberOfScans = 4096

s =

Data acquisition session using National Instruments hardware:
 Will run for 4096 scans (4.096 seconds) at 1000 scans/second.
 Operation starts immediately.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts

Changing the number of scans changed the duration of the acquisition to 4.096 seconds
at the default rate of 1000 scans per second.

Acquire the data and store it in the variable, data and plot it:

data = startForeground(s);
plot (data)

See Also

Related Examples
• “Acquire Data in the Background” on page 7-6

 See Also

7-3

Acquire Data from Multiple Channels
This example shows how to acquire data from multiple channels, and from multiple
devices on the same chassis. In this example, you acquire voltage data from an NI 9201
device with ID cDAQ1Mod4 and an NI 9205 device with ID cDAQ1Mod1.

Create a session object and add two analog input 'Voltage' channels on cDAQ1Mod1 with
channel ID 0 and 1:

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1', 0:1, 'Voltage');

Add an additional channel on a separate device, cDAQ1Mod6 with channel ID 0. For NI
devices, use either a terminal name, like ai0, or a numeric equivalent like 0. Store this
channel in the variable ch.
ch = addAnalogInputChannel(s,'cDAQ1Mod6','ai0','Voltage')

ch =

Data acquisition analog input channel 'ai0' on device 'cDAQ1Mod16':

 Coupling: DC
TerminalConfig: Differential
 Range: -10 to +10 Volts
 Name: empty
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 ADCTimingMode: ''

View the session object to see the three channels:
s

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 Number of channels: 3
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ------------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (SingleEnd) -10 to +10 Volts
 2 ai cDAQ1Mod1 ai1 Voltage (SingleEnd) -10 to +10 Volts
 3 ai cDAQ1Mod6 ai0 Voltage (Diff) -10 to +10 Volts

Acquire the data and store it in the variable, data and plot it:

data = startForeground(s);
plot(data)

7 Session Based Analog Input and Output

7-4

Change the properties of the channel 'ai0' on cDAQ1Mod6 and display ch:
ch.TerminalCongif ='SingleEnded';
ch.Name = 'Velocity sensor';
ch

ch =

Data acquisition analog input channel 'ai0' on device 'cDAQ1Mod6':

 Coupling: DC
TerminalCongif: SingleEnded
 Range: -10 to +10 Volts
 Name: 'Velocity sensor'
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 ADCTimingMode: empty

Acquire the data and store it in the variable, data and plot it:

data = startForeground(s);
plot(data)

See Also

Related Examples
• “Acquire Data in the Foreground” on page 7-2
• “Acquire Data in the Background” on page 7-6

 See Also

7-5

Acquire Data in the Background
This example shows how to acquire data in the background using events and listeners.

A background acquisition depends on events and listeners to allow your code to access
data as the hardware acquires it and to react to any errors as they occur. For more
information, see Events and Listeners — Concepts in the MATLAB Object-Oriented
Programming documentation. Use events to acquire data in the background. In this
example, you acquire data from an NI 9205 device with ID cDAQ1Mod1 using a listener
and a DataAvailable event.

Listeners execute a callback function when notified that the event has occurred. Use
Session.addlistener to create a listener object that executes your callback function.

Create an NI session object and an analog input 'Voltage' channel on cDAQ1Mod1:

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage');

Add the listener for the DataAvailable event and assign it to the variable lh:

lh = addlistener(s,'DataAvailable', @plotData);

For more information on events, see Events and Listeners — Concepts in the MATLAB
Object-Oriented Programming documentation.

Create a simple callback function to plot the acquired data and save it as plotData.m in
your working directory:

 function plotData(src,event)
 plot(event.TimeStamps, event.Data)
 end

Here, src is the session object for the listener and event is a daq.DataAvailableInfo
object containing the data and associated timing information.

Acquire the data and see the plot update while MATLAB is running:

startBackground(s);

When the operation is complete, delete the listener:

7 Session Based Analog Input and Output

7-6

delete (lh)

See Also

Related Examples
• “Acquire Data in the Foreground” on page 7-2

 See Also

7-7

Acquire Data from an Accelerometer
This example shows how to acquire and display data from an accelerometer attached to a
vehicle driven under uneven road conditions.

Discover Devices that Support Accelerometers

To discover a device that supports Accelerometers, click the name of the device in the list
in the Command window, or access the device in the array returned by daq.getDevices
command. This example uses National Instruments® CompactDAQ Chassis NI
cDAQ-9178 and module NI 9234 with ID cDAQ1Mod3.

devices = daq.getDevices
devices(3)

devices =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- --------------------------------
1 ni cDAQ1Mod1 National Instruments NI 9205
2 ni cDAQ1Mod2 National Instruments NI 9263
3 ni cDAQ1Mod3 National Instruments NI 9234
4 ni cDAQ1Mod4 National Instruments NI 9201
5 ni cDAQ1Mod5 National Instruments NI 9402
6 ni cDAQ1Mod6 National Instruments NI 9213
7 ni cDAQ1Mod7 National Instruments NI 9219
8 ni cDAQ1Mod8 National Instruments NI 9265
9 ni Dev1 National Instruments PCIe-6363
10 ni Dev2 National Instruments NI ELVIS II

ans =

ni: National Instruments NI 9234 (Device ID: 'cDAQ1Mod3')
 Analog input subsystem supports:
 -5.0 to +5.0 Volts range
 Rates from 1000.0 to 51200.0 scans/sec
 4 channels ('ai0','ai1','ai2','ai3')
 'Voltage','Accelerometer','Microphone','IEPE' measurement types

This module is in slot 3 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

7 Session Based Analog Input and Output

7-8

Add an Accelerometer Channel

Create a session, and add an analog input channel with the Accelerometer
measurement type.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Accelerometer');

Set Session Rate and Duration

Change the scan rate to 4000 scans per second and the duration to 30 seconds.

s.Rate = 4000;
s.DurationInSeconds = 30;
s

s =

Data acquisition session using National Instruments hardware:
 Will run for 30 seconds (120000 scans) at 4000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- -------------------- ------------------ ----
 1 ai cDAQ1Mod3 ai0 Accelerometer (Diff) -5.0 to +5.0 Volts

Set Sensitivity

You must set the Sensitivity value to the value specified in the accelerometer's data
sheet. This example uses a ceramic shear accelerometer model 352C22 from PCB
Piezotronics is used with 9.22 mV per Gravity.

s.Channels(1).Sensitivity = 0.00922;
s.Channels(1)

ans =

Data acquisition analog input accelerometer channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.00922

 Acquire Data from an Accelerometer

7-9

ExcitationCurrent: 0.001
 ExcitationSource: None
 Coupling: DC
 TerminalConfig: Differential
 Range: -5.0 to +5.0 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Accelerometer'

Start Acquisition and Plot the Data

Use startForeground to acquire and plot the data.

[data,time] = startForeground(s);
plot(time,data)
xlabel('Time (Secs)');
ylabel('Acceleration (Gravities)');

7 Session Based Analog Input and Output

7-10

See Also

Related Examples
• “Acquire Data in the Foreground” on page 7-2
• “Acquire Data in the Background” on page 7-6

 See Also

7-11

Acquire Bridge Measurements
This example shows how to acquire and plot data from an NI USB-9219 device. The
device ID is 'cDAQ1Mod7'.

Create a session object and save it to the variable s:

s = daq.createSession('ni');

Add an analog input channel with the 'Bridge' measurement type and save it to the
variable ch:

ch = addAnalogInputChannel(s,'cDAQ1Mod7', 'ai1', 'Bridge');

You might see this warning:
Warning: The Rate property was reduced to 2 due to the default ADCTimingMode of this device,
which is 'HighResolution'.
To increase rate, change ADCTimingMode on this channel to 'HighSpeed'.

To allow a higher acquisition rate, change the channel ADCTimingMode to 'HighSpeed':

ch.ADCTimingMode = 'HighSpeed'

You might see this warning:
Warning: This property must be the same for all channels on this device. All channels
associated with this device were updated.

Change the acquisition rate to 10 scans per second.

s.Rate = 10

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (10 scans) at 10 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ---------------- ----------------------------- ----
 1 ai cDAQ1Mod7 ai1 Bridge (Unknown) -0.025 to +0.025 VoltsPerVolt

Set BridgeMode to 'Full', which uses all four resistors in the device to acquire the
voltage values:

ch.BridgeMode = 'Full'

ch =

7 Session Based Analog Input and Output

7-12

Data acquisition analog input channel 'ai1' on device 'cDAQ1Mod7':

 BridgeMode: Full
 ExcitationSource: Internal
 ExcitationVoltage: 2.5
NominalBridgeResistance: 'Unknown'
 Range: -0.063 to +0.063 VoltsPerVolt
 Name: empty
 ID: 'ai1'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Bridge'
 ADCTimingMode: HighSpeed

Set the resistance of the bridge device to 350 ohms:

ch.NominalBridgeResistance = 350

ch =

Data acquisition analog input channel 'ai1' on device 'cDAQ1Mod7':

 BridgeMode: Full
 ExcitationSource: Internal
 ExcitationVoltage: 2.5
NominalBridgeResistance: 350
 Range: -0.063 to +0.063 VoltsPerVolt
 Name: empty
 ID: 'ai1'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Bridge'
 ADCTimingMode: HighSpeed

Save the acquired data to a variable and start the acquisition:

data = startForeground(s);

Plot the acquired data:

plot(data)

See Also

Related Examples
• “Acquire Data in the Foreground” on page 7-2
• “Acquire Data in the Background” on page 7-6

 See Also

7-13

Acquire Sound Pressure Data
This example shows how to acquire sound data from an NI 9234. The device is in an NI
cDAQ-9178 chassis, on slot 3 with ID cDAQ1Mod3.

Create a session, and add an analog input channel with Microphone measurement type:

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone');

Set the channels sensitivity to 0.037 v/pa.

s.Channels.Sensitivity = 0.037;

Examine the channel properties:

s.Channels(1)

ans =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037
MaxSoundPressureLevel: 136
 ExcitationCurrent: 0.002
 ExcitationSource: Internal
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -135 to +135 Pascals
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

Change the maximum sound pressure level to 100db and examine channel properties.

s.Channels.MaxSoundPressureLevel = 100;
s.Channels(1)

ans =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037
MaxSoundPressureLevel: 100
 ExcitationCurrent: 0.002
 ExcitationSource: Internal
 Coupling: AC
 TerminalConfig: PseudoDifferential
 Range: -135 to +135 Pascals

7 Session Based Analog Input and Output

7-14

 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'Microphone'
 ADCTimingMode: ''

Set acquisition session duration to 4 seconds.

s.DurationInSeconds = 4;

Acquire the data against time and save it in a variable.

[data,time] = startForeground(s);

Plot the data.

plot(time, data)

 Acquire Sound Pressure Data

7-15

See Also

Related Examples
• “Acquire Data in the Foreground” on page 7-2
• “Acquire Data in the Background” on page 7-6

7 Session Based Analog Input and Output

7-16

Acquire IEPE Data
This example shows how to acquire IEPE data using an NI 9234. The device is in an NI
cDAQ-9178 chassis on slot 3 with ID cDAQ1Mod3.

Create a session, and add an analog input channel with IEPE measurement type.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod3',0,'IEPE');

Change the channel property ExcitationCurrent to 0.004 volts.

s.Channels(1).ExcitationCurrent = .004;

Acquire the data against time and save it in a variable.

[data,time] = startForeground(s);

Plot the data.

plot(time,data)

 Acquire IEPE Data

7-17

See Also

Related Examples
• “Acquire Data in the Foreground” on page 7-2
• “Acquire Data in the Background” on page 7-6

7 Session Based Analog Input and Output

7-18

Getting Started Acquiring Data with Digilent® Analog
Discovery™

This example shows how to acquire analog input voltage data (at a sampling rate of
300kHz). The dynamic range of the incoming signal is -2.5 to 2.5 volts. You will use the
session-based interface with the Digilent Analog Discovery hardware.

Create a session with a Digilent device

Discover Digilent devices connected to your system using daq.getDevices and create a
session using the listed Digilent device.

s = daq.createSession('digilent')

s =

Data acquisition session using Digilent Inc. hardware:
 Will run for 1 second (10000 scans) at 10000 scans/second.
 No channels have been added.

Add an analog input channel

Add an analog input channel with device ID AD1 and channel ID 1. Set the measurement
type to Voltage.

ch = addAnalogInputChannel(s,'AD1', 1, 'Voltage')

ch =

Data acquisition analog input voltage channel '1' on device 'AD1':

 Coupling: DC
 TerminalConfig: Differential
 Range: -25 to +25 Volts
 Name: ''
 ID: '1'
 Device: [1x1 daq.di.DeviceInfo]
MeasurementType: 'Voltage'

 Getting Started Acquiring Data with Digilent® Analog Discovery™

7-19

Set session and channel properties

Set the sampling rate to 300kHz and the channel range to -2.5 to 2.5 volts. Set the
duration to 0.5 seconds.

s.Rate = 300e3;
s.Channels.Range = [-2.5 2.5];
s.DurationInSeconds = 0.5

s =

Data acquisition session using Digilent Inc. hardware:
 Will run for 0.5 seconds (150000 scans) at 300000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ------------------ ----
 1 ai AD1 1 Voltage (Diff) -2.5 to +2.5 Volts

Acquire a single sample

Acquire a single scan on-demand, measuring the data and trigger time.

[singleReading, triggerTime] = inputSingleScan(s)

singleReading =

 -0.0104

triggerTime =

 7.3532e+05

Acquire timestamped data

Start a clocked foreground acquisition.

[data, timestamps, triggerTime] = startForeground(s);

Display the results
plot(timestamps, data);
xlabel('Time (seconds)')

7 Session Based Analog Input and Output

7-20

ylabel('Voltage (Volts)')
title(['Clocked Data Triggered on: ' datestr(triggerTime)])

See Also

Related Examples
• “Acquire Data in the Foreground” on page 7-2
• “Acquire Data in the Background” on page 7-6

 See Also

7-21

Generate Signals in the Foreground
This example shows how to generate data using an NI 9263 device with ID cDAQ1Mod2.

Create a session object and save it to the variable, s:

s = daq.createSession('ni');

Change the scan rate of the session object to generate 10,000 scans per second:

s.Rate = 10000

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (10000 scans) at 10000 scans/second.
 Operation starts immediately.
 No channels have been added.

Add an analog output 'Voltage' channel:
addAnalogOutputChannel(s,'cDAQ1Mod2',0,'Voltage')

ans =

Data acquisition session using National Instruments hardware:
 No data queued. Will run at 1000 scans/second. Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ---------------- ----
 1 ao cDAQ1Mod2 ao0 Voltage -10 to +10 Volts

Specify the channel ID on NI devices using a terminal name, like 'ao1', or a numeric
equivalent like 1.

Create the data to output:

outputData = linspace(-1, 1, 2200)';

Queue the data:

queueOutputData(s,outputData);

The duration changes to 0.22 seconds based on the length of the queued data and the
specified scan rate. When the session contains output channels, duration and number of
scans become read-only properties of the session. The number of scans in a session is

7 Session Based Analog Input and Output

7-22

determined by the amount of data queued and the duration is determined by

s ScansQueued

s Rate

.

.

.

Display the session object to see this change:
s

s =

Data acquisition session using National Instruments hardware:
 Will run for 2200 scans (0.22 seconds) at 10000 scans/second.
 .All devices synchronized using cDAQ1 CompactDAQ chassis backplane. (Details)
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ---------------- ----
 1 ao cDAQ1Mod2 ao0 Voltage (Diff) -10 to +10 Volts

Generate the data. MATLAB returns once the generation is complete.

startForeground(s);

See Also

Related Examples
• “Generate Signals in the Background” on page 7-26

 See Also

7-23

Generate Signals Using Multiple Channels
This example shows how to generate data from multiple channels and multiple devices.
The example generates data using channels from an NI 9263 voltage device with ID
cDAQ1Mod2 and an NI 9265 current device with ID cDAQ1Mod8.

Create an NI session object and add two analog output 'Voltage' channels to
cDAQ1Mod2:

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2', 2:3, 'Voltage');

Step 2. Add one output 'Current' channel on cDAQ1Mod8:
addAnalogOutputChannel(s,'cDAQ1Mod8', 'ao2', 'Current')
ans =

Data acquisition session using National Instruments hardware:
 No data queued. Will run at 1000 scans/second.
 All devices synchronized using cDAQ1 CompactDAQ chassis backplane. (Details)
 Number of channels: 3
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ---------------- ----
 1 ao cDAQ1Mod2 ao2 Voltage (Diff) -10 to +10 Volts
 2 ao cDAQ1Mod2 ao3 Voltage (Diff) -10 to +10 Volts
 3 ao cDAQ1Mod8 ao2 Current 0 to +0.020 A

Specify the channel ID on NI devices using a terminal name, like ao1, or a numeric
equivalent like 1.

Create one set of data to output for each added channel:

outputData(:,1) = linspace(-1,1,1000);
outputData(:,2) = linspace(-2,2,1000)';
outputData(:,3) = linspace(0,0.02,1000)';

Queue the output data:

queueOutputData(s,outputData);

Step 5. Generate the data:

7 Session Based Analog Input and Output

7-24

startForeground(s);

See Also

Related Examples
• “Generate Signals in the Foreground” on page 7-22
• “Generate Signals in the Background” on page 7-26

 See Also

7-25

Generate Signals in the Background
This example shows how to generate signals in the background.

Create an NI session object and add an analog output 'Voltage' channel to
cDAQ1Mod2:

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao0', 'Voltage');

Specify the channel ID on NI devices using a terminal name, like ao1, or a numeric
equivalent like 1.

Create the data to output:

outputData = (linspace(-1, 1, 1000)');

Queue the output data:

queueOutputData(s,outputData);

Generate the signal:

startBackground(s);

You can execute other MATLAB commands while the generation is in progress. In this
example, issue a pause(), which causes the MATLAB command line to wait for you to
press any key.

pause();

See Also

Related Examples
• “Generate Signals in the Foreground” on page 7-22

7 Session Based Analog Input and Output

7-26

Generate Signals in the Background Continuously
This example shows how to continuously generate signals. A continuous background
generation depends on events and listeners to allow your code to enable continuous
queuing of data and to react to any errors as they occur. For details, see Events and
Listeners — Concepts in the MATLAB Object-Oriented Programming documentation. In
this example, you generate from an NI 9263 device with ID cDAQ1Mod2 using a listener
on the DataRequired event.

Listeners execute a callback function when notified that the event has occurred. Use
Session.addlistener to create the listener object that executes your callback
function.

Create an NI session object and add an analog output 'Voltage' channel on
cDAQ1Mod2:

s = daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao0', 'Voltage');

Specify the channel ID on NI devices using a terminal name, like 'ao1', or a numeric
equivalent like 1.

Create the data to output and queue the output data.

queueOutputData(s,linspace(1, 10, 1000)');

Add the listener to the DataRequired event and assign it to the variable lh:

lh = addlistener(s,'DataRequired',@queueMoreData);

Step 4. Create a simple callback function to generate the data and save it as
queueMoreData.m in your working folder:

 function queueMoreData(src,event)
 queueOutputData(s,linspace(1, 10, 1000)');
 end

Generate the signal:

startBackground(s);

You can execute other MATLAB commands while the generation is in progress. In this
example, issue a pause(), which causes the MATLAB command line to wait for you to
press any key.

 Generate Signals in the Background Continuously

7-27

pause();

Delete the listener:

delete(lh)

See Also

Related Examples
• “Generate Signals in the Background” on page 7-26

7 Session Based Analog Input and Output

7-28

Getting Started Generating Data with Digilent® Analog
Discovery™

This example shows how to generate analog output voltage data (at a rate of 300kHz).
The output voltage-range of the outgoing signal is -5.0 to +5.0 volts. You will use the
session-based interface with Digilent Analog Discovery hardware.

Create a session with a Digilent device

Discover Digilent devices connected to your system using daq.getDevices and create a
session using the listed Digilent device.

s = daq.createSession('digilent')

s =

Data acquisition session using Digilent Inc. hardware:
 Will run for 1 second (10000 scans) at 10000 scans/second.
 No channels have been added.

Add an analog output channel

Add an analog output channel with device ID AD1 and channel ID 1. Set the measurement
type to Voltage.

ch = addAnalogOutputChannel(s,'AD1', 1, 'Voltage')

ch =

Data acquisition analog output voltage channel '1' on device 'AD1':

 TerminalConfig: SingleEnded
 Range: -5.0 to +5.0 Volts
 Name: ''
 ID: '1'
 Device: [1x1 daq.di.DeviceInfo]
MeasurementType: 'Voltage'

 Getting Started Generating Data with Digilent® Analog Discovery™

7-29

Generate a single sample

Generate a single scan on-demand.

outVal = 2;
outputSingleScan(s,outVal);

Set session and channel properties

Set the generation rate to 300kHz.

rate = 300e3;
s.Rate = rate;

Define the output waveform

Generate a 10 Hz sine-wave for half a second. The length of the output waveform and the
specified output rate define the duration of the waveform.

f = 10;
duration = 0.5;
t = (1:(duration*rate))/rate;
output = sin(2*pi*f*t)';

Generate continuous data

Queue some data and start a clocked foreground generation.

queueOutputData(s,output);
startForeground(s);

See Also

Related Examples
• “Generate Signals in the Foreground” on page 7-22
• “Generate Signals in the Background” on page 7-26

7 Session Based Analog Input and Output

7-30

Acquire Data and Generate Signals Simultaneously
This example shows how to acquire data from an NI 9205 device with ID cDAQ1Mod1 and
generate signals using an NI 9263 device with ID cDAQ1Mod2.

You can acquire data and generate signals at the same time, on devices on the same
chassis. When the session contains output channels, duration and number of scans
become read-only properties of the session. The number of scans in a session is
determined by the amount of data queued, and the duration is determined by

s ScansQueued

s Rate

.

.

.

Step 1. Create an NI session object and add one analog input channel on cDAQ1Mod1 and
one analog output channel on cDAQ1Mod2:

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage');
addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao0', 'Voltage')

ans =

Data acquisition session using National Instruments hardware:
 No data queued. Will run at 1000 scans/second.
 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- ------------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts
 2 ao cDAQ1Mod2 ao0 Voltage (SingleEnd) -10 to +10 Volts

Queue the output data:

queueOutputData(s,linspace(-1, 10, 2500)');

Display the session object to see the change in duration and the number of scans. These
values change based on the amount of data queued.

s

s =

Data acquisition session using National Instruments hardware:
 Will run for 2500 scans (2.5 seconds) at 1000 scans/second.
 All devices synchronized using cDAQ1 CompactDAQ chassis backplane. (Details)
 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ---------------- ----
 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts
 2 ao cDAQ1Mod2 ao0 Voltage (Diff) -10 to +10 Volts

 Acquire Data and Generate Signals Simultaneously

7-31

Acquire the data store it in the variable, acquiredData:

acquiredData = startForeground(s);
plot(acquiredData)

See Also

Related Examples
• “Generate Signals in the Foreground” on page 7-22
• “Generate Signals in the Background” on page 7-26
• “Acquire Data in the Foreground” on page 7-2
• “Acquire Data in the Background” on page 7-6

7 Session Based Analog Input and Output

7-32

Acquire Data with the Analog Input Recorder
This topic shows how to use the Analog Input Recorder app to view and record data from
an NI USB-6218 device.

To open the Analog Input Recorder, on the MATLAB Toolstrip, on the Apps tab, in the
Test and Measurement section, double-click the Analog Input Recorder.

Upon opening, the Analog Input Recorder attempts to find all your attached analog input
devices.

Note Opening the Analog Input Recorder deletes all your existing data acquisition
sessions in MATLAB.

The data acquisition session created by the Analog Input Recorder is not accessible from
the MATLAB command line.

If you plug in a device while the app is open, you must refresh the listing for access to the
device. On the Devices tab, click Refresh. Use the same procedure to remove a device
from the listing after unplugging it.

Select the device you want to use in the Device List. The app immediately starts a
preview of the analog input using default settings.

 Acquire Data with the Analog Input Recorder

7-33

Modify any scan and channel settings for your specific needs. The following image shows
the app displaying three channels of the device. Notice that the Max Rate value has
changed with the number of channels; this relationship depends on the device.

7 Session Based Analog Input and Output

7-34

Set values for Number of Scans or Duration, and Rate.

Check Continuous if you want to override the duration or number of scans. In this mode,
recording will continue until you explicitly stop it.

When you are ready to start recording data, click Record.

When recording is complete, either because the specified number of scan is recorded or
you click Stop, the logged data is assigned to the indicated MATLAB Workspace variable.
By default, the variable starts as DAQ_1, and its name is incremented with every
recording, but you can specify any valid MATLAB variable name. The variable is assigned
an M-by-N timetable, where M is the number of scans and N is the number of channels.

The following commands show the beginning of the acquired timetable for a multiple
channel recording.

 Acquire Data with the Analog Input Recorder

7-35

whos

 Name Size Bytes Class Attributes

 DAQ_4 1000x3 33315 timetable

View the first four rows of the timetable.

DAQ_4(1:4,:)

ans =

 4×3 timetable

 Time ai0 ai1 ai2
 _________ _______ ________ _______

 0 sec 0.59036 1.1226 1.6268
 0.001 sec -1.0661 -0.49113 0.07001
 0.002 sec -2.6327 -2.0683 -1.4901
 0.003 sec -4.0592 -3.5349 -2.9738

The timestamp elements of the table are relative to the first scan. The absolute time of
the first scan is available in the timetable UserData property. For example,

datestr(DAQ_4.Properties.UserData.StartTime,'dd-mmm-yyyy HH:MM:SS')

 '30-Jun-2017 15:24:10'

In the Analog Input Recorder, click Generate Code for the app to open the MATLAB
editor and display code for recording data. The following code is generated for the finite
(non-continuous) 3-channel recording of this example. Notice that this code uses the
startForeground function; a continuous recording would use startBackground.
% Auto-generated by Data Acquisition Toolbox Analog Input Recorder on 27-Jun-2017 14:05:11

%% Create Data Acquisition Session
% Create a session for the specified vendor.
s = daq.createSession('ni');

%% Add Channels to Session
% Add channels and set channel properties, if any.
addAnalogInputChannel(s,'Dev1','ai0','Voltage');

addAnalogInputChannel(s,'Dev1','ai1','Voltage');

addAnalogInputChannel(s,'Dev1','ai2','Voltage');

7 Session Based Analog Input and Output

7-36

%% Acquire Data
% Start the session in foreground.
[data, timestamps, starttime] = startForeground(s);

%% Log Data
% Convert the acquired data and timestamps to a timetable in a workspace variable.
ai0 = data(:,1);
ai1 = data(:,2);
ai2 = data(:,3);
DAQ_4 = timetable(seconds(timestamps),ai0,ai1,ai2);

%% Plot Data
% Plot the acquired data on labeled axes.
plot(DAQ_4.Time, DAQ_4.Variables)
xlabel('Time')
ylabel('Amplitude (V)')
legend(DAQ_4.Properties.VariableNames)

%% Clean Up
% Clear the session and channels, if any.
clear s

See Also
Apps
Analog Input Recorder

More About
• “Timetables” (MATLAB)

 See Also

7-37

Session-Based Counter Input and
Output

• “Analog and Digital Counters” on page 8-2
• “Acquire Counter Input Data” on page 8-3
• “Generate Pulse Data on a Counter Channel” on page 8-7

8

Analog and Digital Counters
Use digital and analog counters to count clock ticks and external events. Counters output
a pulse train or count rising or falling edges and measure many quantities including:

• Frequency
• Edges
• PWM
• Position
• Pulse generation

Counters enable timed acquisition and synchronization.

See Also

Related Examples
• “Acquire Counter Input Data” on page 8-3
• “Generate Pulse Data on a Counter Channel” on page 8-7

8 Session-Based Counter Input and Output

8-2

Acquire Counter Input Data
In this section...
“addCounterInputChannel” on page 8-3
“Acquire a Single EdgeCount” on page 8-3
“Acquire a Single Frequency Count” on page 8-4
“Acquire Counter Input Data in the Foreground” on page 8-5

addCounterInputChannel
Use addCounterInputChannel to add a channel that acquires edge count from a
device. You can acquire a single input data or an array by acquiring in the foreground. For
details, see “Session-Based Interface Workflow” on page 5-2 for more information.

Acquire a Single EdgeCount
This example shows how to acquire a single falling edge data from an NI USB-9402 with
device ID 'cDAQ1Mod5'.

Step 1. Create a session object and save it to the variable s.

s = daq.createSession('ni');

Step 2. Add a counter channel with an 'EdgeCount' measurement type.

ch = addCounterInputChannel(s,'cDAQ1Mod5', 'ctr0', 'EdgeCount')

ans =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 Operation starts immediately.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ----- ----
 1 ci cDAQ1Mod5 ctr0 EdgeCount n/a

Step 3. Change the ActiveEdge property to 'Falling' and view the channel properties
to see the change:

 Acquire Counter Input Data

8-3

ch.ActiveEdge = 'Falling'

ans =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Falling
 CountDirection: Increment
 InitialCount: 0
 Terminal: 'PFI0'
IsCounterRunning: false
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'EdgeCount'

Step 4. Acquire a single scan.

inputSingleScan(s)

ans =

 133

Step 5. Reset counters from the initial count and acquire the count again.

resetCounters(s);
inputSingleScan(s)

ans =

71

Acquire a Single Frequency Count
This example shows how to acquire a single frequency scan from an NI USB-9402 with
device ID 'cDAQ1Mod5'.

Step 1. Create an acquisition session.

s = daq.createSession('ni');

Step 2. Add a counter channel with a 'Frequency' measurement type.

addCounterInputChannel('cDAQ1Mod5', 'ctr0', 'Frequency')

ans =

8 Session-Based Counter Input and Output

8-4

 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ----- ----
 1 ci cDAQ1Mod5 ctr0 Frequency n/a

Step 3. Acquire a single scan.

s.inputSingleScan

ans =

 9.5877e+003

Acquire Counter Input Data in the Foreground
This example shows how to acquire rising edge data from an NI USB-9402 with device ID
'cDAQ1Mod5', and plot the acquired data.

Step 1. Create an acquisition session.

s = daq.createSession('ni');

Step 2. Add a counter channel with an 'EdgeCount' measurement type.

addCounterInputChannel(s,'cDAQ1Mod5', 'ctr0', 'EdgeCount')

ans =

Data acquisition session using National Instruments hardware:
 Will run for 10 seconds (10000 scans) at 1000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- --------- ------- --------------- ----- ----
 1 ci cDAQ1Mod5 ctr0 EdgeCount n/a

The counter input channel requires an external clock to perform a foreground acquisition.
If you do not have an external clock, add an analog input channel from a clocked device
on the same CompactDAQ chassis to the session. This example uses an NI 9205 device on
the same chassis with the device ID 'cDAQ1Mod1'.

Step 3. Add an analog input channel with a 'Voltage' measurement type.

addAnalogInputChannel(s,'cDAQ1Mod1', 'ai1', 'Voltage');

Step 4. Acquire the data and store it in the variable data and plot it.

 Acquire Counter Input Data

8-5

data = startForeground(s);
plot (data)

The plot displays results from both channels in the session object:

• EdgeCount measurement
• Analog input data

8 Session-Based Counter Input and Output

8-6

Generate Pulse Data on a Counter Channel

In this section...
“Use addCounterOutputChannel” on page 8-7
“Generate Pulses on a Counter Output Channel” on page 8-7

Use addCounterOutputChannel
Use addCounterOutputChannel to add a channel that generates pulses on a counter/
timer subsystem. You can generate on one channel or on multiple channels on the same
device using startForeground.

Generate Pulses on a Counter Output Channel
This example shows how to generate pulse data on an NI USB-9402 with device ID
'cDAQ1Mod5'.

Step 1. Create a session object and save it to the variable s:

s = daq.createSession('ni');

Step 2. Add a counter output channel with a PulseGeneration measurement type:

ch = addCounterOutputChannel(s,'cDAQ1Mod5', 0, 'PulseGeneration')

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low
 InitialDelay: 2.5e-008
 Frequency: 100
 DutyCycle: 0.5
 Terminal: 'PFI0'
 Name: empty
 ID: 'ctr0'
 Device: [1x1 daq.ni.CompactDAQModule]
 MeasurementType: 'PulseGeneration'

Step 3. Generate pulses in the foreground:

s.startForeground;

 Generate Pulse Data on a Counter Channel

8-7

Session Based Digital Operations

• “Digital Subsystem Channels” on page 9-2
• “Acquire Non-Clocked Digital Data” on page 9-6
• “Acquire Digital Data Using an External Clock” on page 9-7
• “Acquire Digital Data Using a Counter Output Channel as External Clock”

on page 9-9
• “Acquire Digital Data Using a Shared Clock” on page 9-12
• “Acquire Digital Data Using an External Clock via Chassis PFI Terminal” on page 9-14
• “Acquire Digital Data in Hexadecimal Values” on page 9-15
• “Control Stepper Motor using Digital Outputs” on page 9-16
• “Generate Non-Clocked Digital Data” on page 9-21
• “Generate Signals Using Decimal Data Across Multiple Lines” on page 9-22
• “Generate and Acquire Data on Bidirectional Channels” on page 9-23
• “Generate Signals on Both Analog and Digital Channels” on page 9-25
• “Output Digital Data Serially Using a Software Clock” on page 9-26

9

Digital Subsystem Channels
Digital subsystems transfer digital or logical values in bits via digital lines. You can
perform clocked and non-clocked digital operations using the session-based interface in
the Data Acquisition Toolbox.

Lines on the digital subsystem are added as channels to your session using
addDigitalChannel. Digital channels can be:

• InputOnly: Allows you to read digital data.
• OutputOnly: Allows you to write digital data.
• Bidirectional: Allows you to change the direction of the channel to both read and

write data. By default the direction is specified as Unknown. You can change the
direction to Input or Output.

Note If you are using bidirectional channels, you must set the Direction before you use
the channel.

Digital Clocked Operations
With clocked operations, you can acquire or generate clocked signals at a specified scan
rate for a specified duration or number of scans. These operations use hardware timing to
acquire or generate at specific times. The operation is controlled by events tied to
subsystem clocks. In a clocked acquisition, data is transferred from the device to your
system memory and displays when the event calls for the data. In signal generation, data
generated from the device is stored in memory until the configured event occurs. When
an event occurs, data is sent via the digital channels to the specified devices.

Digital systems do not inherently have a clock. You can synchronize data by adding a
clock in one of these ways:

9 Session Based Digital Operations

9-2

 Digital Subsystem Channels

9-3

• If you have an on-board clock on your device, you can import the clock to the session.

• If your device does not have an on-board clock you can:

• Import a clock from an external source. See “Acquire Digital Data Using an
External Clock” on page 9-7 for more information.

• Generate a clock from a Counter Output subsystem in your session and import that
clock. See “Acquire Digital Data Using a Counter Output Channel as External
Clock” on page 9-9 for more information.

• Share a clock from the analog input subsystem. See “Acquire Digital Data Using a
Shared Clock” on page 9-12 for more information

Access Digital Subsystem Information
This example shows how to access the device’s digital subsystem information and find
line and port information using daq.getDevices.

Find devices connected to your system and find the ID for NI 6255.

d = daq.getDevices;

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -----------------------------

9 Session Based Digital Operations

9-4

1 ni Dev1 National Instruments USB-6255
2 ni Dev2 National Instruments USB-6363

View the subsystem information for Dev1, with index 1.

subs = d(1).Subsystems;

View the digital subsystem information, which is the third subsystem on this device.

subs(3)

ans =

Digital subsystem supports:
 24 channels ('port0/line0' - 'port2/line7')
 'InputOnly','OutputOnly','Bidirectional' measurement types

 Digital Subsystem Channels

9-5

Acquire Non-Clocked Digital Data
This example shows how to read data using two channels on an NI 6255

Find devices connected to your system and find the ID for NI 6255:

d = daq.getDevices;

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -----------------------------
1 ni Dev1 National Instruments USB-6255
2 ni Dev2 National Instruments USB-6363

Create a session and add two lines from port 0 on Dev1:

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line0:1','InputOnly')

ans =

Data acquisition session using National Instruments hardware:
 Clocked operations using startForeground and startBackground are disabled.
 Only on-demand operations using inputSingleScan and outputSingleScan can be done.
 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- --------------- ----- ----
 1 dio Dev1 port0/line0 InputOnly n/a
 2 dio Dev1 port0/line1 InputOnly n/a

Acquire digital data:

inputSingleScan(s)

ans =

 1 0

9 Session Based Digital Operations

9-6

Acquire Digital Data Using an External Clock
This example shows how to acquire digital data in the foreground by using an external
scan clock.

You can use a function generator or the on-board clock from a digital circuit. Here, a
function generator is physically wired to the terminal PFI9 on device NI 6255.

Create a session and add a line from port 0 line 2 on Dev1.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line2','InputOnly');

Note Not all devices support clocked (hardware timed) digital I/O operations with
startForeground and startBackground. For these devices you can use software
timed operations with inputSingleScan and outputSingleScan.

Devices that support clocked digital I/O operations might not support them on all ports.
Check your device specifications.

Set the rate of your session to the expected rate of your external scan clock.

s.Rate = 1000

Note Importing an external clock does not automatically set the rate of your session.
Manually set the session’s rate to match the expected external clock frequency.

 Acquire Digital Data Using an External Clock

9-7

Add an external scan clock to your device on terminal PFI9. For more information see
Terminals property.

addClockConnection(s,'External','Dev1/PFI9','ScanClock')

ans =

Scan Clock is provided externally and will be received by
'Dev1' at terminal 'PFI9'.

 Source: 'External'
 Destination: 'Dev1/PFI9'
 Type: ScanClock

Acquire clocked data and plot it.

dataIn = startForeground(s);
plot(dataIn)

See Also

Related Examples
• “Acquire Digital Data Using a Shared Clock” on page 9-12
• “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-

9

9 Session Based Digital Operations

9-8

Acquire Digital Data Using a Counter Output Channel as
External Clock

This example shows how to acquire digital data using a counter output channel that
generates pulses as an external clock. The counter provides the clock in this acquisition.

In this example, we will generate a clock in one session using a counter output channel
and export the clock to another session that acquires clocked digital data.

Note Importing an external clock does not automatically set the rate of your session.
Manually set the session’s rate to match the expected external clock frequency.

Generate a Clock Using a Counter Output Channel
This example shows how to create a clock session with a counter output channel that will
continuously generate frequency pulses in the background. Use this channel as an
external clock in your clocked digital acquisition.

Create a clock frequency that you will use to synchronize the frequency and rate of your
counter output as well as the rate of your digital acquisition in the next step.

clockFreq = 100;

Create a session and add a counter output channel with PulseGeneration
measurement type.

 Acquire Digital Data Using a Counter Output Channel as External Clock

9-9

sClk = daq.createSession('ni');
ch1 = addCounterOutputChannel(sClk,'Dev1',0,'PulseGeneration')

Tip Make sure the counter channel you add is not being used in a different session. You
will get a terminal conflict error if the hardware is reserved in another session.

Save the counter output terminal to a variable. You will use this terminal in your digital
session to specify the external clock that synchronizes your digital clocked operations.

clkTerminal = ch1.Terminal;

You will use this terminal in your digital session to specify the external clock that
synchronizes your digital clocked operations.

Set the frequency of your counter session to the clock frequency.

ch1.Frequency = clockFreq

Set the session to continuous mode.

sClk.IsContinuous = true;

Use Counter Clock To Acquire Clocked Digital Data
This example shows how to create a digital input session and import an external clock
from the clock session.

Create a session and add a line from port 0 line 2 on Dev1.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line2','InputOnly')

Note Not all devices support clocked (hardware timed) digital I/O operations with
startForeground and startBackground. For these devices you can use software
timed operations with inputSingleScan and outputSingleScan.

Devices that support clocked digital I/O operations might not support them on all ports.
Check your device specifications.

Tip PFI terminal resources may be shared. Check your device routing in NI MAX.

9 Session Based Digital Operations

9-10

Set the sessions scan rate to the same as the rate and the frequency of the counter output
channel.

s.Rate = clockFreq;

Import the clock from your clock session to synchronize your acquisition.

addClockConnection(s,'External',['Dev1/' clkTerminal],'ScanClock');

Start the counter output channel in the background and ensure it is running.

startBackground(sClk);
for i = 1:10
 if sClk.IsRunning
 break;
 else
 pause(0.1);
 end
end

Acquire and plot data.

dataIn = startForeground(s);
plot(dataIn)

See Also

Related Examples
• “Acquire Digital Data Using a Shared Clock” on page 9-12
• “Acquire Digital Data Using an External Clock” on page 9-7

 See Also

9-11

Acquire Digital Data Using a Shared Clock
This example shows how to share the clock with the analog input subsystem on your
device with the digital subsystem and acquire automatically synchronized clocked data.
You do not need any physical connections to share the clock. For information on
automatic synchronization see Automatic Synchronization.

Create a session and add a line from port 0 line 2 on Dev1.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line2','InputOnly')

Note Not all devices support clocked (hardware timed) digital I/O operations with
startForeground and startBackground. For these devices you can use software
timed operations with inputSingleScan and outputSingleScan.

Devices that support clocked digital I/O operations might not support them on all ports.
Check your device specifications.

Add an analog input channel to your session.

addAnalogInputChannel(s,'Dev1',0,'Voltage')

ans =

9 Session Based Digital Operations

9-12

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- --------------- ---------------- ----
 1 dio Dev1 port0/line2 InputOnly n/a
 2 ai Dev1 ai0 Voltage (Diff) -10 to +10 Volts

Plot the acquired digital data.

dataIn = startForeground(s);
plot(dataIn(:,1))

See Also

Related Examples
• “Acquire Digital Data Using an External Clock” on page 9-7
• “Acquire Digital Data Using a Counter Output Channel as External Clock” on page 9-

9

 See Also

9-13

Acquire Digital Data Using an External Clock via Chassis
PFI Terminal

The following example shows how to acquire clocked digital data using an external clock
provided at the CompactDAQ chassis PFI terminal.

%% Setup
% cDAQ 9178 chassis
% cDAQ2Mod3 is 9402
% Digital signal is connected to PFI0 terminal of NI 9402 module
% Function generator provides 100 kHz clock to PFI0 terminal on NI 9178
% chassis

s = daq.createSession('ni');
addDigitalChannel(s, 'cDAQ2Mod3', 'Port0/Line0', 'InputOnly');
addClockConnection(s, 'External', 'cDAQ2/PFI0', 'ScanClock');
s.Rate = 100E+3;
[data, timestamps] = startForeground(s);
plot(timestamps, data);

See Also

9 Session Based Digital Operations

9-14

Acquire Digital Data in Hexadecimal Values
This example shows how to write data using two channels on an NI 6255.

Find devices connected to your system and find the ID for NI 6255.

d = daq.getDevices;

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -----------------------------
1 ni Dev1 National Instruments USB-6255
2 ni Dev2 National Instruments USB-6363

Create a session and add four lines from port 0 on Dev1.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line0:3ˋ','InputOnly')
ans =

Data acquisition session using National Instruments hardware:
 Clocked operations using startForeground and startBackground are disabled.
 Only on-demand operations using inputSingleScan and outputSingleScan can be done.
 Number of channels: 4
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- --------------- ----- ----
 1 dio Dev1 port0/line0 InputOnly n/a
 2 dio Dev1 port0/line1 InputOnly n/a
 3 dio Dev1 port0/line2 InputOnly n/a
 4 dio Dev1 port0/line3 InputOnly n/a

Acquire digital data in hexadecimal values.

binaryVectorToHex(inputSingleScan(s))

ans =

C

 Acquire Digital Data in Hexadecimal Values

9-15

Control Stepper Motor using Digital Outputs
This example shows how to control a stepper motor using digital output ports.

Discover Devices Supporting Digital Output

To discover a device that supports digital output:

• Issue daq.getDevices in the Command window.
• Click on the device name in the list returned by the command.

devices = daq.getDevices

devices =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- --------------------------------
1 ni cDAQ1Mod1 National Instruments NI 9205
2 ni cDAQ1Mod2 National Instruments NI 9263
3 ni cDAQ1Mod3 National Instruments NI 9234
4 ni cDAQ1Mod4 National Instruments NI 9201
5 ni cDAQ1Mod5 National Instruments NI 9402
6 ni cDAQ1Mod6 National Instruments NI 9213
7 ni cDAQ1Mod7 National Instruments NI 9219
8 ni cDAQ1Mod8 National Instruments NI 9265
9 ni Dev1 National Instruments PCIe-6363
10 ni Dev2 National Instruments NI ELVIS II

This example uses a National Instruments® ELVIS II with ID Dev2. Verify that its digital
subsystem supports the OutputOnly measurement type.

devices(10)

ans =

ni: National Instruments NI ELVIS II (Device ID: 'Dev2')
 Analog input subsystem supports:
 7 ranges supported
 Rates from 0.0 to 1250000.0 scans/sec

9 Session Based Digital Operations

9-16

 16 channels ('ai0' - 'ai15')
 'Voltage' measurement type

 Analog output subsystem supports:
 -5.0 to +5.0 Volts,-10 to +10 Volts ranges
 Rates from 0.0 to 2857142.9 scans/sec
 2 channels ('ao0','ao1')
 'Voltage' measurement type

 Digital subsystem supports:
 39 channels ('port0/line0' - 'port2/line6')
 'InputOnly','OutputOnly','Bidirectional' measurement types

 Counter input subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'EdgeCount' measurement type

 Counter output subsystem supports:
 Rates from 0.1 to 80000000.0 scans/sec
 2 channels ('ctr0','ctr1')
 'PulseGeneration' measurement type

Hardware Setup Description

This example uses a Portescap 20M020D1U 5V 18 Degree Unipolar Stepper Motor. The
TTL signals produced by the digital I/O system are amplified by a Texas Instruments
ULN2003AIN High Voltage High Current Darlington Transistor Array, as shown in this
schematic:

 Control Stepper Motor using Digital Outputs

9-17

Add Digital Output Only Channels

Create a session, and add 4 digital channels on port 0, lines 0-3. Set the measurement
type to OutputOnly. These are connected to the four control lines for the stepper motor.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev2','port0/line0:3','OutputOnly')

Warning: A channel that does not support clocked sampling was added to the
session. Clocked operations using startForeground and startBackground will be
disabled. Only on-demand operations using inputSingleScan and outputSingleScan
can be done.

ans =

 1×604 char array

Data acquisition session using National Instruments hardware:
 Clocked operations using startForeground and startBackground are disabled.
 Only on-demand operations using inputSingleScan and outputSingleScan can be done.
 Number of channels: 4

9 Session Based Digital Operations

9-18

 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- --------------- ----- ----
 1 dio Dev2 port0/line0 OutputOnly n/a
 2 dio Dev2 port0/line1 OutputOnly n/a
 3 dio Dev2 port0/line2 OutputOnly n/a
 4 dio Dev2 port0/line3 OutputOnly n/a

Define Motor Steps

Refer to the Portescap motor wiring diagram describing the sequence of 4 bit patterns.
Send this pattern sequentially to the motor to produce counterclockwise motion. Each
step turns the motor 18 degrees. Each cycle of 4 steps turns the motor 72 degrees.
Repeat this sequence five times to rotate the motor 360 degrees.

step1 = [1 0 1 0];
step2 = [1 0 0 1];
step3 = [0 1 0 1];
step4 = [0 1 1 0];

Rotate Motor

Use outputSingleScan to output the sequence to turn the motor 72 degrees
counterclockwise.

outputSingleScan(s,step1);
outputSingleScan(s,step2);
outputSingleScan(s,step3);
outputSingleScan(s,step4);

Repeat sequence 50 times to rotate the motor 10 times counterclockwise.

for motorstep = 1:50
 outputSingleScan(s,step1);
 outputSingleScan(s,step2);
 outputSingleScan(s,step3);
 outputSingleScan(s,step4);
end

To turn the motor 72 degrees clockwise, reverse the order of the steps.

outputSingleScan(s,step4);
outputSingleScan(s,step3);

 Control Stepper Motor using Digital Outputs

9-19

outputSingleScan(s,step2);
outputSingleScan(s,step1);

Turn Off All Outputs

After you use the motor, turn off all the lines to allow the motor to rotate freely.

outputSingleScan(s,[0 0 0 0]);

9 Session Based Digital Operations

9-20

Generate Non-Clocked Digital Data
This example shows how to write data to two lines on an NI 625

Find devices connected to your system and find the ID for NI 6255.

d = daq.getDevices;

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -----------------------------
1 ni Dev1 National Instruments USB-6255
2 ni Dev2 National Instruments USB-6363

Create a session and add two lines from port 0 on Dev1.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line0:1','OutputOnly')

Data acquisition session using National Instruments hardware:
 Clocked operations using startForeground and startBackground are disabled.
 Only on-demand operations using inputSingleScan and outputSingleScan can be done.
 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- --------------- ----- ----
 1 dio Dev1 port0/line0 OutputOnly n/a
 2 dio Dev1 port0/line1 OutputOnly n/a

Generate digital data.

outputSingleScan(s,[1,0])

 Generate Non-Clocked Digital Data

9-21

Generate Signals Using Decimal Data Across Multiple
Lines

This example shows how to convert decimal data and output to two lines on an NI 6255.

Find devices connected to your system and find the ID for NI 6255.

d = daq.getDevices;

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -----------------------------
1 ni Dev1 National Instruments USB-6255
2 ni Dev2 National Instruments USB-6363

Create a session and add two lines from port 0 on Dev1.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line0:1','OutputOnly')

Data acquisition session using National Instruments hardware:
 Clocked operations using startForeground and startBackground are disabled.
 Only on-demand operations using inputSingleScan and outputSingleScan can be done.
 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- --------------- ----- ----
 1 dio Dev1 port0/line0 OutputOnly n/a
 2 dio Dev1 port0/line1 OutputOnly n/a

Convert the decimal number 2 to a binary vector and output the result

outputSingleScan(s,decimalToBinaryVector(2))

9 Session Based Digital Operations

9-22

Generate and Acquire Data on Bidirectional Channels
This example shows how to use a bidirectional channel and read and write data using the
same two lines on an NI 6255.

Find devices connected to your system and find the ID for NI 6255.

d = daq.getDevices;

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -----------------------------
1 ni Dev1 National Instruments USB-6255
2 ni Dev2 National Instruments USB-6363

Create a session and add two lines from port 0 and 2 lines from port 1 on Dev1.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line0:1','Bidirectional');
addDigitalChannel(s,'Dev1','Port1/Line0:1','Bidirectional')

Data acquisition session using National Instruments hardware:
 Clocked operations using startForeground and startBackground are disabled.
 Only on-demand operations using inputSingleScan and outputSingleScan can be done.
 Number of channels: 4
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- ----------------------- ----- ----
 1 dio Dev1 port0/line0 Bidirectional (Unknown) n/a
 2 dio Dev1 port0/line1 Bidirectional (Unknown) n/a
 3 dio Dev1 port1/line0 Bidirectional (Unknown) n/a
 4 dio Dev1 port1/line1 Bidirectional (Unknown) n/a

Set the direction on all channels to output data.

for i = 1:4
 s.Channels(i).Direction = 'Output';
end

Generate digital data.

outputSingleScan(s,[1,0, 1, 0])

Change the direction on all channels to input data

 Generate and Acquire Data on Bidirectional Channels

9-23

for i = 1:4
 s.Channels(i).Direction = 'Input';
end

Acquire digital data.

inputSingleScan(s)

ans =

 1 0 1 0

You can also use the MATLAB deal function to change direction on all channels together.

[s.channels(:).Direction] = deal('Input');

9 Session Based Digital Operations

9-24

Generate Signals on Both Analog and Digital Channels
This example shows how to generate signals when the session contains both analog and
digital channels.

Find devices connected to your system and find the ID for NI 6255.

d = daq.getDevices;

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -----------------------------
1 ni Dev1 National Instruments USB-6255
2 ni Dev2 National Instruments USB-6363

Create a session and add two digital lines from port 0 on Dev1.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line0:1','OutputOnly')

Data acquisition session using National Instruments hardware:
 Clocked operations using startForeground and startBackground are disabled.
 Only on-demand operations using inputSingleScan and outputSingleScan can be done.
 Number of channels: 2
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ----------- --------------- ----- ----
 1 dio Dev1 port0/line0 OutputOnly n/a
 2 dio Dev1 port0/line1 OutputOnly n/a

Add an analog output channel from Dev1.

addAnalogOutputChannel(s,'Dev1',0,'Voltage')

Output data on both the digital and analog channels.

outputSingleScan(s,[decimalToBinaryVector(2),1.23])

 Generate Signals on Both Analog and Digital Channels

9-25

Output Digital Data Serially Using a Software Clock
This example shows how to generate signals serially using software clocks and the timer
function.

Create a session and add two digital lines from port 0 on Dev1 to output signals.

s = daq.createSession('ni');
addDigitalChannel(s,'Dev1','Port0/Line0:1','OutputOnly');

You will use Port0/line0 as the output clock and Port0/line1 as the serial data
output.

Specify serial data to be transferred at 500 bits/sec.

serialData = [1 0 1 1 0 0 1 1];

Configure the software clock using a timer object, which has.

• A period of one micro second.
• BusyMode set to queue to accommodate clock stretching and start the timer.

t = timer('TimerFcn',{@sendData,s,serialData}, ...
 'Period', 0.001,...
 'ExecutionMode','fixedRate',...
 'BusyMode','queue');

start(t);

Define the sendData function and output data.
function sendData(obj, ~,s,serialData)
% Declare clock and bitNumber as persistent variables.
persistent clock;
persistent bitNumber;
% Persistent variables retain their values in memory between multiple calls

% to the function. Initialize the clock and the bit number for serial data
% transfer:

if isempty(clock)
 clock = 1;
end
% bitNumber is used to index into the serial data that needs to be sent.
if isempty(bitNumber)
 bitNumber = 0;
end
% Execute all calls to the function:
clock = ~clock;

9 Session Based Digital Operations

9-26

% When the function reaches the end of the serial data, stop, reset the
% persistent variables to initial state and delete the timer:
if bitNumber > numel(serialData)
 stop(obj);
 % Reset variables for next run
 bitNumber = 0;
 clock = 1;
 disp('Stopping software timer. Command sent!')
 return
end
% Output the serial data and clock in your session:
outputSingleScan(s,[clock serialData(bitNumber)]);
end

Delete the timer after all the serial bits are output.

pause(.1)
delete(t);

 Output Digital Data Serially Using a Software Clock

9-27

Multichannel Audio

10

Multichannel Audio Input and Output
You can acquire and generate audio signals using one or more available channels of a
supported audio device. You can also simultaneously operate channels on multiple
supported audio devices. Currently Data Acquisition Toolbox supports audio channels for
devices that work with DirectSound interface. Using the session-based interface, you can:

• Acquire and generate audio signals either in sequence or as separate operations.
• Acquire and generate signals in parallel where the signals may share the start time.
• Acquire the data in the background and filter or process the input data simultaneously.

You can generate data immediately in response to the processed input data. In this
case, both the acquisition and generation operations start and stop together.

You cannot read directly from or write directly to files using the multichannel audio
feature. Use audioread and audiowrite.

Multichannel Audio Session Rate
The session rate in an audio session is the rate at which the session samples audio data.
All channels in a session have the same session rate. The default session rate for an audio
session is 44100 Hz. If you have multiple devices in the session, make sure that they can
all operate at a common session rate. For standard sample rates, see
StandardSampleRates property.

You can choose a value that is in between the standard values. The toolbox will quantize
the set rate to the closest standard rate. If you choose a rate outside the ranges of the
standard rates, the session may use it if the device you are using supports it. To use non-
standard rates you must set UseStandardSampleRate to false. You cannot set the rate
below the standard minimum rate or above the standard maximum rate.

Multichannel Audio Range
Data you acquire or generate using audio channels contains double-precision values.
These values are normalized to -1 to +1 range. The session represents data acquired or
generated in amplitude without units. The audio session’s Range property is read-only
and set at [-1 1].

10 Multichannel Audio

10-2

Acquire Multichannel Audio Data
This example shows how to acquire audio data for seven seconds and plot the data.

Discover audio devices installed on your system and create a session for DirectSound
devices.

d = daq.getDevices
s = daq.createSession('directsound')

Add two audio input channels for the microphone with id Audio1. Make sure that a
microphone is plugged into the appropriate jack.

addAudioInputChannel(s,'Audio1', 1:2);

Set the session to run for 7 seconds and play an audio segment for the microphone to pick
up.

s.DurationInSeconds = 7

Acquire data in the foreground and plot the data versus time.

[data,t] = startForeground(s);
plot(t, data);

 Multichannel Audio Input and Output

10-3

Generate Audio Signals
This example shows how to generate audio signals using a Session. This example uses,
but does not require, a 5.1 channel sound system.

In this example you generate an audio signal using the sound card on your computer
using a 5.1 channel speaker setup. Before you begin, verify that your environment is set

10 Multichannel Audio

10-4

up so that you can generate data with your sound card. For more information refer to
"Troubleshooting in Data Acquisition Toolbox".

Load Audio Signal

Load an audio file containing a sample of Handel's "Hallelujah Chorus."

load handel;

Plot Audio Signal

Plot data in order to identify five distinct segments. Each segment represents a
"Hallelujah" in the chorus. The segments are annotated as 1 to 5.

ly = length(y);
lspan = 1:ly;
t = lspan/Fs;

hf = figure;
plot(t,y./max(y))
axis tight;
title('Signal (Handel''s Hallelujah Chorus) vs Time');
xlabel('Time (s)');
ylabel('Amplitude');

markers = struct('xpos',[0.2,0.4,0.55,0.65,0.8],'string',num2str([1:5]'));
for i = 1:5,
 annotation(hf,'textbox',[markers.xpos(i) 0.48 0.048 0.080],'String', markers.string(i),'BackgroundColor','w','FontSize',16);
end

 Multichannel Audio Input and Output

10-5

View All Available Audio Devices

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description
----- ----------- --------- ---
1 directsound Audio0 DirectSound Primary Sound Capture Driver
2 directsound Audio1 DirectSound Microphone (High Definition Audio Device)
3 directsound Audio2 DirectSound HP 4120 Microphone (2- HP 4120)

10 Multichannel Audio

10-6

4 directsound Audio3 DirectSound Microphone (Plantronics .Audio 400 DSP)
5 directsound Audio4 DirectSound Digital Audio (S/PDIF) (High Definition Audio Device)
6 directsound Audio5 DirectSound Primary Sound Driver
7 directsound Audio6 DirectSound Speakers (Plantronics .Audio 400 DSP)
8 directsound Audio7 DirectSound HP 4120 (2- HP 4120)
9 directsound Audio8 DirectSound Speakers (High Definition Audio Device):1
10 directsound Audio9 DirectSound Speakers (High Definition Audio Device):2

This example uses a 5.1 channel sound system with device ID 'Audio8'.

dev = d(9)

dev =

directsound: DirectSound Speakers (High Definition Audio Device):1 (Device ID: 'Audio8')
 Audio output subsystem supports:
 -1.0 to +1.0 range
 Rates from 80.0 to 1000000.0 scans/sec
 8 channels ('1' - '8')
 'Audio' measurement type

Create an Audio Session

1. Create a session with directsound as the vendor and add an audio output channel to
it.

s = daq.createSession('directsound');
noutchan = 6;
addAudioOutputChannel(s, dev.ID, 1:noutchan);

2. Update the session rate to match the audio sampling rate.

s.Rate = Fs

3. Queue the same waveform to all available channels/speakers. If additional, different
voices are available, these should be queued to the appropriate channels.

queueOutputData(s,repmat(y,1,noutchan));

 Multichannel Audio Input and Output

10-7

4. Start foreground generation. You should hear a sample of Handel's "Hallelujah
Chorus." "Hallelujah" should be voiced five times, one for each segment depicted in the
figure on all channels of the speaker system.

startForeground(s);

5. Close the figure.

close(hf);

s =

Data acquisition session using DirectSound hardware:
 No data queued. Will run at 8192 scans/second.
 Number of channels: 6
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- --------------- ------------- ----
 1 audo Audio8 1 Audio -1.0 to +1.0
 2 audo Audio8 2 Audio -1.0 to +1.0
 3 audo Audio8 3 Audio -1.0 to +1.0
 4 audo Audio8 4 Audio -1.0 to +1.0
 5 audo Audio8 5 Audio -1.0 to +1.0
 6 audo Audio8 6 Audio -1.0 to +1.0

10 Multichannel Audio

10-8

Waveform Function Generation

• “Digilent Analog Discovery Devices” on page 11-2
• “Digilent Waveform Function Generation Channels” on page 11-3
• “Waveform Types” on page 11-6
• “Generate a Standard Waveform Using Waveform Function Generation Channels”

on page 11-9
• “Generate an Arbitrary Waveform Using Waveform Function Generation Channels”

on page 11-11

11

Digilent Analog Discovery Devices
MATLAB supports the Digilent Analog Discovery design kit, a low-cost, portable USB DAQ
device. The kit enables project-based learning for analog circuit design. For professors
and course instructors, the kit comes with downloadable teaching materials, reference
designs, and lab projects.

The Data Acquisition Toolbox Support Package for Digilent Analog Discovery hardware
lets you perform the following tasks in MATLAB:

• Read data from oscilloscope channels.
• Control and generate data from waveform generators.
• Characterize ICs and measure behavior of the circuit and IC components.
• Configure the sampling rate of the Analog Discovery device.
• Trigger the start of your data acquisition.
• Find and display Digilent Analog Discovery device settings.

Use the Add-on Explorer to download required drivers. For more information see “Install
Hardware Support Package for Device Driver” on page 6-3.

For examples on Digilent data acquisition and generation see “Getting Started Acquiring
Data with Digilent® Analog Discovery™” on page 7-19 and “Getting Started Generating
Data with Digilent® Analog Discovery™” on page 7-29.

11 Waveform Function Generation

11-2

Digilent Waveform Function Generation Channels
Waveform function generator channels on a Digilent device can generate both standard
and arbitrary waveform functions. For more information on waveform types, see
“Waveform Types” on page 11-6. This diagram shows you the pin configuration on a
typical Digilent Analog Discovery device. The yellow and the yellow/white lines represent
the waveform channels, marked by W1 and W2 on the device.

To test the Analog Discovery device create this connection to acquire the generated
waveform, and use it with corresponding code:

• 1+ (scope channel 1 positive) to WI through a 1K resistor.
• 1– (scope channel 1 negative) W2 to GND.

 Digilent Waveform Function Generation Channels

11-3

This diagram depicts these connections on a breadboard.

Unlike analog input channels, the function generation channels control their own
waveform frequency. If your session contains both function generation channels and any
other types of acquisition channels, the function generation channels will have their own
frequency and all other channels will inherit the sessions frequency. If you have analog
input channels in the session with function generation channels, the analog input
channels start first and act as a trigger for function generation channels.

See Also
DutyCycle | Offset | Phase | gain

11 Waveform Function Generation

11-4

Related Examples
• “Generate a Standard Waveform Using Waveform Function Generation Channels” on

page 11-9
• “Generate an Arbitrary Waveform Using Waveform Function Generation Channels”

on page 11-11

More About
• “Waveform Types” on page 11-6

 See Also

11-5

Waveform Types
Your hardware can support generation of arbitrary waveforms or standard waveforms, or
both. If your device supports standard waveforms, you can set the gain and offset to
control the output. Standard waveform types include:

• Sine
• Square
• Triangle
• RampUp
• RampDown
• DC

You can control the behavior of different waveform types using the associated properties.
The table shows you which properties work with the supported waveform types for
Digilent devices.

 Frequency Gain Offset Phase DutyCycle
Sine ✓ ✓ ✓ ✓
Square ✓ ✓ ✓ ✓ ✓
Triangle ✓ ✓ ✓ ✓ ✓
RampUp ✓ ✓ ✓ ✓ ✓
RampDown ✓ ✓ ✓ ✓ ✓
DC ✓
Arbitrary ✓

This diagram illustrates how these properties affect a standard square waveform.

11 Waveform Function Generation

11-6

 Waveform Types

11-7

Standard waveforms cannot be clipped. You must keep Gain and Offset values within
voltage range. You cannot change Gain and Offset of arbitrary waveforms.

See Also
DutyCycle | Offset | Phase | gain

Related Examples
• “Generate a Standard Waveform Using Waveform Function Generation Channels” on

page 11-9
• “Generate an Arbitrary Waveform Using Waveform Function Generation Channels”

on page 11-11

More About
• “Digilent Waveform Function Generation Channels” on page 11-3

11 Waveform Function Generation

11-8

Generate a Standard Waveform Using Waveform
Function Generation Channels

This example shows how to use the function generation channel in a session to generate a
sine waveform function, at 100kHz frequency. The signal’s output voltage range is set to
-5.0 to +5.0 volts

Create a Digilent acquisition session

s = daq.createSession('digilent');

Use daq.getdevices to discover available Digilent devices.

Create a waveform function generation channel with a Sine WaveformType.

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine')

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0
 Range: -5.0 to +5.0 Volts
 TerminalConfig: SingleEnded
 Gain: 1
 Offset: 0
 Frequency: 4096
 WaveformType: Sine
 FrequencyLimit: [0.0 25000000.0]
 Name: ''
 ID: '1'
 Device: [1x1 daq.di.DeviceInfo]
 MeasurementType: 'Voltage'

Set the channel’s amplitude to 5v using the Gain property and the channel frequency to
100KHz.

fgenCh.Gain = 5;
fgenCh.Frequency = 100e3

fgenCh

Data acquisition sine waveform generator '1' on device 'AD1':

 Generate a Standard Waveform Using Waveform Function Generation Channels

11-9

 Phase: 0
 Range: -5.0 to +5.0 Volts
 TerminalConfig: SingleEnded
 Gain: 5
 Offset: 0
 Frequency: 100000
 WaveformType: Sine
 FrequencyLimit: [0.0 25000000.0]
 Name: ''
 ID: '1'
 Device: [1x1 daq.di.DeviceInfo]
 MeasurementType: 'Voltage'

Specify the session to run for 5 seconds and start the generation.

s.DurationInSeconds = 5;
startForeground(s);

11 Waveform Function Generation

11-10

Generate an Arbitrary Waveform Using Waveform
Function Generation Channels

This example shows how to use the function generation channel in a session to generate
an arbitrary waveform function, at 100kHz frequency. The signal’s output voltage range is
set to -5.0 to +5.0 volts

Create a Digilent acquisition session

s = daq.createSession('digilent');

Use daq.getdevices to discover available Digilent devices.

Create a waveform function generation channel with a Arbitrary WaveformType.

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Arbitrary')

fgenCh =

Data acquisition arbirtray waveform generator '1' on device 'AD1':

 Phase: 0
 Range: -5.0 to +5.0 Volts
 TerminalConfig: SingleEnded
 Gain: 1
 Offset: 0
 Frequency: 4096
 WaveformType: Sine
 FrequencyLimit: [0.0 25000000.0]
 Name: ''
 ID: '1'
 Device: [1x1 daq.di.DeviceInfo]
 MeasurementType: 'Voltage'

Set the buffer size to 4096 and set the channel to generate a waveform repeatedly from
the contents of the buffer. The channel outputs for a fixed number of times over the space
of the buffer.

buffersize = 4096;
len = buffersize + 1;

f0 = 1;
f1 = 1 * f0;

 Generate an Arbitrary Waveform Using Waveform Function Generation Channels

11-11

f3 = 3 * f0;
f5 = 5 * f0;

waveform = sin(linspace(0, 2*pi*f1, len)) + ...
 sin(linspace(0, 2*pi*f3, len)) + ...
 sin(linspace(0, 2*pi*f5, len));

waveform = 5*waveform./max(abs(waveform));
waveform(end) = [];

Set the WaveformData of the channel to the waveform.

fgenCh.WaveformData = waveform;

Set the frequency of the channel to 100 KHz.

fgenCh.Frequency = 100e3;

Set the session duration to 5 seconds and generate continuous data.

s.DurationInSeconds = 5;
startForeground(s);

11 Waveform Function Generation

11-12

Triggers and Clocks

• “Trigger Connections” on page 12-2
• “Acquire Voltage Data Using a Digital Trigger” on page 12-5
• “Clock Connections” on page 12-7

12

Trigger Connections
In this section...
“When to Use Triggers” on page 12-2
“External Triggering” on page 12-3

When to Use Triggers
Use triggers to simultaneously start all devices in the session. You connect a trigger
source to a trigger destination, A trigger source can be either external, where the trigger
comes from a source outside a session, or on a device and terminal pair within a session.
Trigger destination devices can be external, where the signals are received outside the
session, or devices within the session. To understand source and destination devices, see
“Source and Destination Devices” on page 13-5.

Note You can have multiple destinations for your trigger, but only one source.

12 Triggers and Clocks

12-2

Note You cannot use trigger and clock connections with audio channels.

External Triggering
You can configure devices in a session to receive an external trigger. To use an external
trigger source, your connection parameters must correctly specify the exact device and
terminal pairs to which the external source is connected. Two circumstances of externally
clocked and triggered synchronization are:

• An external hardware event that controls the operation of one or more devices in a
session object. For example, opening and closing a switch starts a background
acquisition on a session.

• An external hardware event synchronizes multiple devices in a session. For example,
opening and closing of a switch starts a background operation across multiple devices
or CompactDAQ chassis in a session.

 Trigger Connections

12-3

See Also

Related Examples
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-13
• “Acquire Voltage Data Using a Digital Trigger” on page 12-5

More About
• “Synchronization” on page 13-2

12 Triggers and Clocks

12-4

Acquire Voltage Data Using a Digital Trigger
This example shows how to use a falling edge digital trigger, which occurs when a switch
closes on an external source. The trigger is connected to terminal PFI0 on device Dev1
and starts acquiring sensor voltage data.

Create a data acquisition session and add channels.

 s = daq.createSession('ni');

Add one voltage input channel from NI USB-6211 with device ID 'Dev1'.

addAnalogInputChannel(s,'Dev1',0,'Voltage');

Connect the switch to terminal 'PFI0' on NI USB-6211. The trigger comes from the
switch, which is an external source.

addTriggerConnection(s,'External','Dev1/PFI0','StartTrigger')

ans =

Start Trigger is provided externally and will be received by 'Dev1' at terminal 'PFI0'.

 TriggerType: 'Digital'
TriggerCondition: RisingEdge
 Source: 'External'
 Destination: 'Dev1/PFI0'
 Type: StartTrigger

Set TriggerCondition property to 'FallingEdge'.

c = s.Connections(1);
c.TriggerCondition = 'FallingEdge';

Acquire data and store it in dataIn. The session waits for the trigger to occur, and starts
acquiring data when the switch closes.

 Acquire Voltage Data Using a Digital Trigger

12-5

dataIn = startForeground(s);

See Also

Related Examples
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-13

More About
• “Synchronization” on page 13-2
• “Trigger Connections” on page 12-2

12 Triggers and Clocks

12-6

Clock Connections
In this section...
“When to Use Clocks” on page 12-7
“Import Scan Clock from External Source” on page 12-7
“Export Scan Clock to External System” on page 12-8

When to Use Clocks
Use clocks to synchronize operations on all connected devices in the session. You connect
a clock source to a clock destination. A clock source can be either external, where the
clock signal comes from a source outside a session, or on a device and terminal pair
within a session. Destination devices can be external, where the signals are received
outside the session, or devices within the session. To understand source and destination
devices, see “Source and Destination Devices” on page 13-5.

Note You cannot use trigger and clock connections with audio channels.

Import Scan Clock from External Source
To import a scan clock from an external source, you must connect the external clock to a
terminal and device pair on a device in your session. Two circumstances of externally
clocked synchronization include:

• Synchronizing operations on all devices within a session by sharing the clock on a
device within the session or an external clock

• Synchronizing operations on all devices within a session and some external devices, by
sharing an external clock

Note Importing an external clock does not automatically set the rate of your session.
Manually set the session’s rate to match the expected external clock frequency.

 Clock Connections

12-7

Export Scan Clock to External System
This example shows how to add a scan clock to a device and output the clock to a device
outside your session, which is connected to an oscilloscope. The scan clock controls the
operations on the external device.

Create a session and add one voltage input channel from NI USB-6211 with device ID
'Dev1'.

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1', 0, 'Voltage');

Add an external clock to terminal 'PFI6' on 'Dev1' and connect it to an external
destination.

addClockConnection(s,'Dev1/PFI6','External','ScanClock')

ans =

Scan Clock for 'Dev1' will available at terminal 'PFI6' for external use.

 Source: 'Dev1/PFI6'
 Destination: 'External'
 Type: ScanClock

Acquire data and store it in dataIn.

dataIn = startForeground(s);

See Also

Related Examples
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-13

More About
• “Synchronization” on page 13-2

12 Triggers and Clocks

12-8

Session-Based Synchronization

• “Synchronization” on page 13-2
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Synchronize with PFI on CompactDAQ Chassis Without Terminals” on page 13-12
• “Multiple-Chassis Synchronization with CompactDAQ Devices” on page 13-13
• “Synchronize DSA Devices” on page 13-14

13

Synchronization
Synchronization of data acquisition operations between multiple channels or devices has
two aspects:

• Start trigger: The signal to initiate all operations
• Scan clock: The timing for repeated generation or acquisition of signals at a clocked

rate

Synchronization can involve the coordination of triggering, clocking, or both. To
synchronize the start of operations on multiple channels or devices, they must use a
shared start trigger. To synchronize the clocked scanning operations on multiple channels
or devices, they must use a shared scan clock.

The following definitions summarize some concepts of synchronization:

Type of Synchronization Description
Start trigger
synchronization

Channels or devices are configured to simultaneously start
their operations from a shared start trigger.

Scan clock synchronization Channels or devices use a shared scan clock to generate or
measure signals.

Perfect synchronization Channels or devices use both a shared start trigger and a
shared scan clock. This does not imply a specific skew or
latency performance between devices or between channels
on a device.

Automatic synchronization The default start trigger synchronization and scan clock
synchronization supported by a data acquisition session,
the driver, and the hardware. This is the extent of
synchronization provided by a data acquisition session
without any explicit synchronization configuration.

When a session starts, it sends a start trigger signal to all
connected channels in the session. The driver and device
might support synchronization from that moment forward.
For example, in some devices all channels use the same
internal scan clock and a shared start trigger, so they are
automatically synchronized without further configuration
of the session.

13 Session-Based Synchronization

13-2

Shared Triggers and Shared Scan Clocks
Typical data acquisition devices provide synchronization between their channels of the
same subsystem. For example, all the analog input channels on one card use a shared
scan clock. A data acquisition session can configure start trigger and scan clock
connections for wider synchronization needs. Use shared start triggers and shared scan
clocks to synchronize data between:

• Multiple subsystems in a device (analog input, analog output, counter input, etc.)
• Multiple devices
• Multiple CompactDAQ or PXI chassis

Note Counter output channels run independently and are unaffected by synchronization
connections.

Use addTriggerConnection to add start trigger connections, and
addClockConnection to add a scan clock connection to your session.

You can share start triggers and scan clock connections to synchronize operations within
a session. Synchronization connections can be:

• Devices in a session connected to a start trigger or scan clock source on another
device in the session

 Synchronization

13-3

• Devices and chassis in a session connected to a start trigger or scan clock source on
another device in the session

13 Session-Based Synchronization

13-4

Source and Destination Devices
A source device and terminal pair generates the synchronization signal and is connected
to the destination device and terminal pairs. You must physically connect the source and
destination terminals, unless they are internally connected. Check your device
specifications for more information. Synchronization connections are added from the
source device to one or more destination devices.

• The source device provides the start trigger or scan clock signals.
• The destination device receives a start trigger or scan clock signal.

For example, if you determine that a terminal on Dev1 will provide a start trigger and a
terminal on Dev2 will receive that trigger, then Dev1 becomes your source device and
Dev2 your destination device. You can have multiple destinations for your trigger and
clock connections, but only one source.

 Synchronization

13-5

Automatic Synchronization
In most cases, a session automatically starts all its devices at the same time when you
start an operation. You must configure them to start synchronously when devices are not
on a single chassis and do not share a clock. If you have not configured synchronization
on such devices, the start operation reduces the latency between devices, running them
very close together to achieve near-simultaneous signals. However, devices are
automatically and perfectly synchronized in the session if they are:

• Subsystems on a single device in the session. This synchronizes your analog input,
analog output, and counter input channels.

Note Counter output channels run independently and are unaffected by
synchronization connections.

• Modules on a single CompactDAQ chassis in the session.
• PXI modules synchronized with a reference clock on a PXI chassis. For perfect

synchronization, you must share a trigger as well. See “Acquire Synchronized Data
Using PXI Devices” on page 13-9 for more information.

See Also

More About
• “Multiple-Device Synchronization Using USB or PXI Devices” on page 13-7
• “Synchronize DSA Devices” on page 13-14

13 Session-Based Synchronization

13-6

Multiple-Device Synchronization Using USB or PXI
Devices

You can synchronize multiple devices in a session using a shared scan clock and shared
start trigger. You can synchronize devices using either PFI or RTSI lines.

Requirement You must register your RTSI cable using the National Instruments
Measurement & Automation Explorer.

Acquire Synchronized Data Using USB Devices
This example shows how to acquire synchronized voltage data from multiple devices
using a shared start trigger and a shared scan clock. Analog input channels on all three
devices are connected to the same function generator.

Create a data acquisition session and add one voltage input channel from each device:

• NI USB-6211 with device ID 'Dev1'
• NI USB 6218 with device ID 'Dev2'
• NI USB 6255 with device ID 'Dev3'

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1',0,'Voltage');
addAnalogInputChannel(s,'Dev2',0,'Voltage');
addAnalogInputChannel(s,'Dev3',0,'Voltage');

Choose terminal 'PFI4' on 'Dev1' as the start trigger source. Connect the trigger
source to terminal 'PFI0' on 'Dev2' and to 'PFI0' on 'Dev3', which are the
destination devices.

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');
addTriggerConnection(s,'Dev1/PFI4','Dev3/PFI0','StartTrigger');

Choose terminal 'PFI5' on 'Dev1' as the scan clock source. Connect it to 'PFI1' on
'Dev2', and to 'PFI1' on 'Dev3'.

s.addClockConnection('Dev1/PFI5','Dev2/PFI1','ScanClock');
s.addClockConnection('Dev1/PFI5','Dev3/PFI1','ScanClock')

ans =

 Multiple-Device Synchronization Using USB or PXI Devices

13-7

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by:
 'Dev2' at terminal 'PFI0'
 'Dev3' at terminal 'PFI0'
Scan Clock is provided by 'Dev1' at 'PFI5' and will be received by:
 'Dev2' at terminal 'PFI1'
 'Dev3' at terminal 'PFI1'

 index Type Source Destination
 ----- ------------ --------- -----------
 1 StartTrigger Dev1/PFI4 Dev2/PFI0
 2 StartTrigger Dev1/PFI4 Dev3/PFI0
 3 ScanClock Dev1/PFI5 Dev2/PFI1
 4 ScanClock Dev1/PFI5 Dev3/PFI1

Acquire data and assign it to dataIn.

dataIn = startForeground(s);

Plot the data.

plot(dataIn)

13 Session-Based Synchronization

13-8

All channels are connected to the same function generator, and therefore display
overlapping signals, indicating synchronization.

Acquire Synchronized Data Using PXI Devices
This example shows how to acquire voltage data from two PXI devices on the same
chassis, using a shared start trigger to synchronize operations within your session. PXI
devices have a shared reference clock that automatically synchronizes scan clocking. You
need to add only start trigger connections to synchronize operations in your session with
PXI devices. Analog input channels on all devices are connected to the same function
generator.

Create a data acquisition session and add one voltage input channel from each NI-PXI
4461 device with IDs 'PXI1Slot2' and 'PXI1Slot3'.

 Multiple-Device Synchronization Using USB or PXI Devices

13-9

s = daq.createSession('ni');
addAnalogInputChannel(s,'PXI1Slot2',0,'Voltage');
addAnalogInputChannel(s,'PXI1Slot3',0,'Voltage');

Add a start trigger connection to terminal 'PXI_Trig0' on 'PXI1Slot2' and connect it
to terminal 'PXI_Trig0' on 'PXI1Slot3'. PXI cards are connected through the
backplane, so you do not have to wire them physically.
addTriggerConnection(s,'PXI1Slot2/PXI_Trig0','PXI1Slot3/PXI_Trig0','StartTrigger');

Acquire data and assign it to dataIn.

dataIn = startForeground(s);

Plot the data.

plot(dataIn)

13 Session-Based Synchronization

13-10

All channels are connected to the same function generator and have a shared reference
clock. The signals overlap, indicating perfect synchronization.

 Multiple-Device Synchronization Using USB or PXI Devices

13-11

Synchronize with PFI on CompactDAQ Chassis Without
Terminals

This example shows how to use the external trigger and external clock functionality on a
CompactDAQ chassis without PFI terminals, by using the PFI terminals on digital I/O
CompactDAQ modules.

Some CompactDAQ chassis (e.g., NI 9174 and 9172) do not support built-in triggers,
because they do not have external BNC PFI connectors on the chassis itself. However, the
PFI pins for these chassis can be accessed through a digital module such as the NI 9402.

%% Setup
% cDAQ 9174
% cDAQ2Mod3 is 9402
% cDAQ2Mod4 is 9201

%% For the start trigger
s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ2Mod4','ai0','Voltage');
addTriggerConnection(s,'External','cDAQ2Mod3/PFI0','StartTrigger');
[data,timestamps] = startForeground(s);
plot(timestamps,data);

%% For the external scan clock
% Function generator provides 100 kHz clock to PFI1 terminal on NI 9402
s = daq.createSession('ni');
addDigitalChannel(s,'cDAQ2Mod3','Port0/Line2','InputOnly');
addClockConnection(s,'External','cDAQ2Mod3/PFI1','ScanClock');
s.Rate = 100E+3;
[data,timestamps] = startForeground(s);
plot(timestamps,data);

See Also

13 Session-Based Synchronization

13-12

Multiple-Chassis Synchronization with CompactDAQ
Devices

This example shows how to acquire voltage data from two devices, each on a separate
CompactDAQ chassis, using a shared trigger and clock to synchronize operations within
your session.

You can synchronize multiple CompactDAQ chassis in a session using one chassis to
provide clocking and triggering for all chassis in the session. Clock and trigger sources
are attached to terminals on the chassis, itself. All modules on the chassis as well as other
connected devices, are synchronized using these signals.

Create a data acquisition session and add channels. Add one voltage input channel each
from the two NI 9201 devices with IDs 'cDAQ1Mod1' and 'cDAQ2Mod1'.

s = daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1', 0,'Voltage');
addAnalogInputChannel(s,'cDAQ2Mod1', 0,'Voltage');

Choose terminal 'PFI0' on 'cDAQ1' as your trigger source and connect it to terminal
'PFI0' on 'cDAQ2'. Make sure the wiring on the hardware runs between these two
terminals. Note that you are using the chassis and terminal pair here, not device and
terminal pair.
addTriggerConnection(s,'cDAQ1/PFI0','cDAQ2/PFI0','StartTrigger');

Choose terminal 'PFI1' on 'cDAQ1' as your clock source and connect it to terminal
'PFI1' on 'cDAQ2'. Make sure the wiring on the hardware runs between these
terminals.

addClockConnection(s,'cDAQ1/PFI1','cDAQ2/PFI1','ScanClock');

Acquire data and store it in dataIn.

dataIn = startForeground(s);

 Multiple-Chassis Synchronization with CompactDAQ Devices

13-13

Synchronize DSA Devices

In this section...
“PXI DSA Devices” on page 13-14
“Hardware Restrictions” on page 13-14
“Synchronize Dynamic Signal Analyzer PXI Devices” on page 13-17
“PCI DSA Devices” on page 13-18
“Synchronize DSA PCI Devices” on page 13-18
“Handle Filter Delays with DSA Devices” on page 13-19

The Digital Signal Analyzer (DSA) product family is designed to make highly accurate
audio frequency measurements. You can synchronize other PCI and PXI product families
using “Trigger Connections” on page 12-2 and “Clock Connections” on page 12-7. To
synchronize PXI and PCI family of DSA devices you need to use a sample clock with time-
based synchronization or a reference clock time based synchronization. The AutoSyncDSA
property allows you to automatically enable both homogeneous and heterogeneous
synchronization between PCI and PXI device families. AutoSyncDSA property
automatically configures all the necessary clocks, triggers, and sync pulses needed to
synchronize DSA devices in your session.

PXI DSA Devices
PXI devices are synchronized using the PXI chassis backplane, which includes timing and
triggering buses. You can automatically synchronize these device series both
homogeneously (within the same series) and heterogeneously (across separate series) in
the same session.

• PXI/e 446x series
• PXI/e 449x series
• PXI 447x series

Hardware Restrictions
Before you synchronize, ensure that your device combinations adhere to these hardware
restrictions:

13 Session-Based Synchronization

13-14

PXI/e 446x and 449x Series

Chassis restriction
You can synchronize these series using either a PXI or a PXIe chassis. Make sure all
your modules are on the same chassis.

Slot placement restriction
You can use any slot on the chassis that supports your module.

PXI 447x Series

Chassis restriction
You can synchronize this series both homogeneously and heterogeneously only on a
PXI chassis. You can use them on a PXIe chassis to acquire unsynchronized data.

Slot placement restriction
On the PXI chassis, only the system timing slot can drive the trigger bus. Refer to
your device manual to find the system timing slot. This image shows the system
timing slot on a PXIe 1062Q chassis.

 Synchronize DSA Devices

13-15

• Homogeneous synchronization: You can synchronize PXI 447x devices
homogeneously as long as one device is plugged into the system timing slot of a
PXI chassis.

• Heterogeneous synchronization:

• You can synchronize a PXI 447x device with a PXI 446x device when the 446x is
plugged into the system timing slot of a PXI chassis.

• You cannot synchronize PXI 447x devices with PXI 449x devices.
• You cannot use hybrid-slot compatible 446x devices.

13 Session-Based Synchronization

13-16

DSA Device Compatibility Table

 446x Series 447x Series 449x Series
446x
Series

✓ • PXI chassis only
• Standard 446x device, not

hybrid-slot compatible
• 446x device in system

timing slot

✓

447x
Series

• PXI chassis only
• Standard 446x device, not

hybrid-slot compatible
• 446x device in system

timing slot

• PXI chassis only
• One device in system timing

slot

χ

449x
Series

✓ χ ✓

Synchronize Dynamic Signal Analyzer PXI Devices
This example shows how to acquire synchronized data from two Dynamic Signal Analyzer
DSA PXI devices, NI PXI-4462 and NI PXI-4461.

Create an acquisition session and add one voltage analog input channel from each of the
two PXI devices

s = daq.createSession('ni');
addAnalogInputChannel(s,'PXI1Slot2', 0, 'Voltage');
addAnalogInputChannel(s,'PXI1Slot3', 0, 'Voltage');

Acquire data in the foreground without synchronizing the channels:

[data,time] = startForeground(s);
plot(time, data)

The data returned is not synchronized.

Synchronize the two channels using the AutoSyncDSA property:

s.AutoSyncDSA = true;

Acquire data in the foreground and plot it:

 Synchronize DSA Devices

13-17

[data,time] = startForeground(s);
plot(time, data)

The data is now synchronized.

PCI DSA Devices
PCI devices are synchronized use the RTSI cable. You can automatically synchronize
these device series both homogeneously (within the same series) and heterogeneously
(across separate series) in the same session when they are connected with a RTSI cable.

• PCI 446x series
• PCI 447x series

Note If you are synchronizing PCI devices make sure you register the RTSI cables in
Measurement and Automation Explorer. For more information see the NI knowledge base
article What is RTSI and How is it Configured? (Document ID: 2R5FK53J)

Synchronize DSA PCI Devices
This example shows how to acquire synchronized data from two DSA PCI devices, NI
PCI-4461 and NI PCI-4462.

Connect the two devices with a RTSI cable.

Register your RTSI cable in Measurement and Automation Explorer.

Create an acquisition session and add one voltage analog input channel from each of the
two PXI devices

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1', 0, 'Voltage');
addAnalogInputChannel(s,'Dev2', 0, 'Voltage');

Synchronize the two channels using the AutoSyncDSA property:

s.AutoSyncDSA = true;

Acquire data in the foreground and plot it:

13 Session-Based Synchronization

13-18

[data,time] = startForeground(s);
plot(time, data)

Handle Filter Delays with DSA Devices
DSA devices have a built in digital filter. You must account for filter delays when
synchronizing between heterogeneous devices. Refer to your device manuals for filter
delay information. For more information see the NI knowledge base article Why Is My
Data Delayed When Using DSA Devices? (Document ID: 2UI8PGX4).

Example 13.1. Account for Filter Delays

This example shows how to account for filter delays when you use the same sine wave to
acquire from two different channels from 2 different PXI devices. Perfectly synchronized
channels will show zero phase lag between the two acquired signals.

Create a session and add two analog input channels with Voltage measurement type,
from National Instruments PXI-4462 and NI PXI-4472.

s = daq.createSession('ni');
ch1 = addAnalogInputChannel(s,'PXI1Slot2', 0, 'Voltage');
ch2 = addAnalogInputChannel(s,'PXI1Slot3', 0, 'Voltage');

Acquire unsynchronized data and plot it:

[data,time] = startForeground(s);
plot(time, data)

Use AutoSyncDSA to automatically configure the triggers, clocks and sync pulses of the
channels to synchronize the devices:

s.AutoSyncDSA = true;

Acquire synchronized data:

[data,time] = startForeground(s);
plot(time, data)

Calculate the phase lag between the two channels, using the device data sheet:

NI PXI 4462 data sheet specifies the phase lag to be 63 samples when
EnhancedAliasRejectionEnable property is disabled. Check to make sure this
property is set to false or 0:

 Synchronize DSA Devices

13-19

ch1.EnhancedAliasRejectionEnable

ans =

 0

To synchronize signals from these devices the phase lag should be 63-38 or 24 samples.
Confirm that the data returned is 24 samples apart.

NI PXI 6672 data sheet specified the phase lag to be 38 samples when
EnhancedAliasRejectionEnable property is disabled. Check to make sure this
property is set to false or 0:

ch2.EnhancedAliasRejectionEnable

ans =

 0

See Also
Properties
AutoSyncDSA | EnhancedAliasRejectionEnable

13 Session-Based Synchronization

13-20

Transition Your Code to Session-
Based Interface

14

Transition Your Code to Session-Based Interface
This topic helps you transition your code from the legacy interface to the session-based
interface.

In this section...
“Transition Common Workflow Commands” on page 14-2
“Acquire Analog Data” on page 14-3
“Use Triggers” on page 14-4
“Log Data” on page 14-6
“Set Range of Analog Input Subsystem” on page 14-8
“Fire an Event When Number of Scans Exceed Specified Value” on page 14-8
“Use Timeout to Block MATLAB While an Operation Completes” on page 14-9
“Count Pulses” on page 14-10

Transition Common Workflow Commands
This table lists the legacy commands for common workflows and their corresponding
session-based commands.

To do this Legacy Command Session-Based Command
Find supported
hardware available to
your system.

daqhwinfo daq.getDevices

Registered DAQ adaptor. daqregister You do not need to register an adaptor if
you are using session-based interface.

Reset MATLAB to initial
state.

daqreset daqreset

Discover newly
connected hardware.

Shut down MATLAB and
restart.

daqreset

Create analog input
object and add a
channel.

ai = analoginput
 ('nidaq', 'Dev1');
addchannel(ai, 1)

s=daq.createSession('ni');
addAnalogInputChannel
 (s,'Dev1',1,'Voltage');

14 Transition Your Code to Session-Based Interface

14-2

To do this Legacy Command Session-Based Command
Create analog output
object

ao = analogoutput
 ('nidaq', 'Dev1');
addchannel(ao, 1)

addAnalogOutputChannel
 (s,'Dev1',0,'Current')

Create a digital input
and output object and
add a digital input line.

dio = digitalio
 ('nidaq','Dev1');
addline(dio,0:3,'in');

s = daq.createSession('ni');
addDigitalChannel
 (s,'Dev1','Port0/Line0:1','InputOnly');

Create counter input
channels

You cannot use counter
channels in the legacy
interface.

s = daq.createSession ('ni')
addCounterInputChannel
 (s,'Dev1','ctr0','EdgeCount')

Start the object. start(ai) startForeground(s);

for operations that block MATLAB when
running.
startBackground (s);

for operations that run without blocking
MATLAB.

Set rate of acquisition. ai.SampleRate=48000 s.rate=48000

Specify an external
trigger.

ai.TriggerType=
 'HwDigital';

addTriggerConnection
(s,'External','Dev3/PFI0','StartTrigger');

Specify a range of input
signals

ai.Channel.InputRange=[-5 5]; ch = addAnalogInputChannel
 (s,'Dev1',1,'Voltage');
ch.Range = [-5 5];

Acquire Analog Data
Legacy Interface

Using the legacy interface, you find hardware available to your system, create an analog
input object and start acquisition.

1 Find hardware available to your system.

d = daqhwinfo;
2 Create an analog input object and add a channel using a National Instruments®

device, with ID Dev1.

ai = analoginput('nidaq','Dev1');
addchannel(ai,1)

 Transition Your Code to Session-Based Interface

14-3

3 Set the sample rate to 8000 and start the channel.

ai.SampleRate = 8000;
start(ai)

Session-Based Interface

Using the session-based interface, you create a vendor session and add channels to the
session. You can use any device or chassis from the same vendor available to your system
and can add a combination of analog, digital, and counter input and output channels. All
the channels operate together when you start the session.

Compatibility Note For devices that support both AC and DC coupling, in the session
interface the default connection is DC coupling, setting the channel’s Coupling property
to 'DC'. For the same devices in the legacy interface, the default was AC coupling.

1 Find hardware available to your system.

d = daq.getDevices
2 Create a session for National Instruments devices.

s = daq.createSession('ni');
3 Set the session’s sample rate to 8000.

s.Rate = 8000
4 Add an analog input channel for the device with ID Dev1 for voltage measurement,

and then start the acquisition.

addAnalogInputChannel(s,'Dev1',1,'Voltage');
startForeground(s);

Use Triggers
Acquire analog data using hardware triggers.

Legacy Interface

Analog operations are configured to trigger immediately by default. You must specify
hwDigital trigger type.

Create an analog input object and add two channels

14 Transition Your Code to Session-Based Interface

14-4

1 Create an analog input object and add two channels

ai = analoginput('nidaq','Dev1');
chan = addchannel(ai,0:1)

2 Specify the ranges of the channel to scale the data uniformly. Configure the input
type to be SingleEnded terminal.

chan.InputRange = [-10 10];
chan.UnitsRange = [-10 10];
chan.SensorRange = [-10 10];
chan.InputType = 'SingleEnded';

3 Specify the trigger type, source and condition. Set TriggerRepeat to 0.

ai.TriggerType = 'HwDigital';
ai.HwDigitalTriggerSource = 'PFI0';
ai.TriggerCondition = 'PositiveEdge';
ai.TriggerRepeat = 0;

4 Specify rate and duration.

actualRate = setverify(ai,'SampleRate',50000);
duration = 0.01;
ai.SamplesPerTrigger = duration*actualRate;

5 Start the channel, wait until the channel receives the specified amount of data, and
get the data.

start(ai);

wait(ai,duration+1);
[data,timestamps] = getdata(ai);

6 Plot the data.

plot(timestamps,data)

Session-Based Interface

You can specify an external event to trigger data acquisition using the session-based
interface.

1 Create a session and add two analog input channels.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'Dev1',0:1,'Voltage');

 Transition Your Code to Session-Based Interface

14-5

2 Configure the terminal and range of the channels in the session.

ch(1).TerminalConfig = 'SingleEnded';
ch(1).Range = [-10.0 10.0];
ch(2).TerminalConfig = 'SingleEnded';
ch(2).Range = [-10.0 10.0];

3 Create an external trigger connection and set the trigger to run one time.

addTriggerConnection(s,'External','Dev1/PFI0','StartTrigger');
s.Connections(1).TriggerCondition = 'RisingEdge';
s.TriggersPerRun = 1;

4 Set the rate and the duration of the acquisition.

s.Rate = 50000;
s.DurationInSeconds = 0.01;

5 Acquire data in the foreground and plot the data.

[data,timestamps] = startForeground(s);
plot(timestamps,data)

Log Data
Legacy Interface

You can log the data to disk and use daqread to read the data back.

1 Create the analog input object and add two channels.

ai = analoginput('winsound');
ch = addchannel(ai,0:1);

2 Define a 2-second acquisition for each trigger, set the trigger to repeat three times,
and log information to the file file00.daq.

duration = 2;
ai.SampleRate = 8000;
actualRate = ai.SampleRate;
ai.SamplesPerTrigger = duration*ActualRate;
ai.TriggerRepeat = 3;
ai.LogFileName = 'file00.daq';
ai = LoggingMode = 'Disk&Memory';

3 Start the acquisition, wait for duration of the acquisition times the number of triggers
for the acquisition to complete. Then extract all the data stored in the log file as
sample-time pairs.

14 Transition Your Code to Session-Based Interface

14-6

start(ai)
wait(ai, (ai.TriggerRepeat+1)*duration + 1)
[data,time] = daqread('file00.daq');

Session-Based Interface

The session-based interface does not have a specified file format for logging data. You can
write to a file in binary mode or save data to a MAT-file.

1 Create a session and add four analog input channels from Dev1.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'Dev1',0:3,'Voltage');

2 Set the same range and terminals for all the channels.

ch(1).Range = [-10.0 10.0];
ch(1).TerminalConfig = 'SingleEnded';
ch(2).Range = [-10.0 10.0];
ch(2).TerminalConfig = 'SingleEnded';
ch(3).Range = [-10.0 10.0];
ch(3).TerminalConfig = 'SingleEnded';
ch(4).Range = [-10.0 10.0];
ch(4).TerminalConfig = 'SingleEnded';

3 Set the session rate and duration of acquisition.

s.Rate = 50000;
s.DurationInSeconds = 0.01;

4 Start the acquisition and plot the data.

[data,timestamps] = startForeground(s);
figure
plot(timestamps,data)

5 Save the acquired data to a MAT-file.

fileName = 'data.mat';
save(fileName,'timestamps','data')

6 Load data from the file into the MATLAB workspace.

savedData = load('data.mat');
figure;
plot(savedData.timestamps,savedData.data)

 Transition Your Code to Session-Based Interface

14-7

Set Range of Analog Input Subsystem
You can specify the measurement range of an analog input subsystem.

Legacy Interface

1 Create the analog input object ai for a National Instruments device, and add two
channels to it.

ai = analoginput('nidaq','Dev1');
addchannel(ai,0:1);

2 Configure both channels to accept input signals in the range from -10 volts to 10
volts.

ai.Channel.InputRange = [-10 10];

Session-Based Interface

1 Create a session and add an analog input channel.

s = daq.createSession('ni');
ch = addAnalogInputChannel(s,'Dev1','ai1','Voltage')

2 Set the range from -10 volts to 10 volts.

ch.Range = [-10 10];

Fire an Event When Number of Scans Exceed Specified Value
You can specify your acquisition to watch for a specified number of scans to occur and fire
an event if the acquisition exceeds the specified number.

Legacy Interface

You can use the BufferingConfig property to specify allocated memory for a specified
channel. If the number of samples acquired exceeds the allocated memory, then an error
is returned.

1 Create an analog input object ai for a National Instruments device and add a channel
to it.

ai = analoginput('nidaq','Dev1');
ch = addchannel(ai,0);

14 Transition Your Code to Session-Based Interface

14-8

2 Set the sample rate to 800,000.

ai.SampleRate = 800000)
3 Set the bufferingConfigMode to 'Manual' and set the bufferingConfig value.

ai.bufferingConfigMode = 'Manual';
ai.bufferingConfig = [512 30];

Session-Based Interface

Use the NotifyWhenDataAvailableExceeds property to fire a DataAvailable event.

1 Create an acquisition session, add an analog input channel.

s = daq.createSession('ni');
addAnalogInputChannel(s,'Dev1','ai0','Voltage');

2 Set the Rate to 800,000 scans per second, which automatically sets the
DataAvailable notification to automatically fire 10 times per second.

s.Rate = 800000;
s.NotifyWhenDataAvailableExceeds

ans =
 80000

3 Increase NotifyWhenDataAvailableExceeds to 160,000.

s.NotifyWhenDataAvailableExceeds = 160000;

Use Timeout to Block MATLAB While an Operation Completes
Legacy Interface

1 Create an analog output object ao for a National Instruments device, then add a
channel and set it to output data at 8000 samples per second with one manual
trigger.

ao = analogoutput('nidaq','Dev1');
ch = addchannel(ao,1);
ao.SampleRate = 8000;
ao.TriggerType = 'Manual';
ao.RepeatOutput = 0;
putdata(ao(zeros(10000,1)));

 Transition Your Code to Session-Based Interface

14-9

2 Start the acquisition and issue a wait command for the acquisition to block MATLAB
for two seconds. If the acquisition does not complete in two seconds, a timeout
occurs.

start(ao)
wait(ao,2)

Session-Based Interface

Background operations run without interrupting the MATLAB Command Window. You can
use wait to block operations in the MATLAB Command Window during background
operations.

1 Create an acquisition session, add an analog output channel.

s = daq.createSession('ni');
addAnalogOutputChannel(s,'Dev1','ao0','Voltage');

2 Set the session rate to 8000.

s.Rate = 8000
3 Queue some output data.

queueOutputData(s,zeros(10000,1));
4 Start the acquisition and issue a wait to block MATLAB. If the operation does not

complete in 2 seconds, a timeout occurs.

startBackground(s);
s.wait(2);

Count Pulses
You can count pulses to clock your data acquisition.

Legacy Interface

You cannot use counter input and output channels with the legacy interface. You can use
the analog input subsystem’s internal clock to create a threshold and look for consecutive
samples that are on opposite sides of the threshold. This gives you results similar to using
a counter input channel.

ai = analoginput('nidaq');
addchannel(ai,1);

14 Transition Your Code to Session-Based Interface

14-10

threshold = 3.5;
offsetData = [data(2:end);NaN];
risingEdge = find(data < threshold & offsetData > threshold);
fallingEdge = find(data > threshold & offsetData < threshold);

Session-Based Interface

Count edges of a pulse using a counter input channel on your device.

s.createSession('ni');
addCounterInputChannel(s,'Dev1','ctr0','EdgeCount');
c = inputSingleScan(s);

 Transition Your Code to Session-Based Interface

14-11

Troubleshooting Your Hardware
This appendix describes simple tests you can perform to troubleshoot your data
acquisition hardware. The tests involve using software provided by the vendor or the
operating system (sound cards), and do not involve using Data Acquisition Toolbox
software. The sections are as follows.

A

Supported Hardware
For a list of hardware supported byData Acquisition Toolbox, see https://
www.mathworks.com/hardware-support/data-acquistion-software.html.

A Supported Hardware

A-2

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html

Hardware and Device Drivers
In this section...
“Registering the Hardware Driver Adaptor” on page A-3
“Device Driver Registration” on page A-3
“Hardware Diagnostics” on page A-3

Registering the Hardware Driver Adaptor
When you first create a device object, the associated hardware driver adaptor is
automatically registered. The data acquisition engine can now make use of its services.

The hardware driver adaptors included with the toolbox are all located in the daq/
private folder. These are the full names for each adaptor.

Supported Vendors/Device Types and Full Adaptor Names

Vendor/Device Type Full Adaptor Name
National Instruments mwnidaq.dll
Windows sound cards mwwinsound.dll

Device Driver Registration
If you are using a Windows Vista™ or a Windows 7 system and cannot register device
drivers, you could have UAC enabled on the system. Refer to this technical bulletin for
more information.

Hardware Diagnostics
Run daqsupport to get diagnostic information for all installed hardware adaptors on
your system. Use this information to diagnose issues with your hardware. Make sure you
include this information when you contact MathWorks® support.

 Hardware and Device Drivers

A-3

https://www.mathworks.com/support/solutions/en/data/1-5SAEJ8/index.html

Troubleshooting Tips
In this section...
“Find Devices and Create a Session” on page A-4
“Is My NI-DAQ Driver Supported?” on page A-5
“Why Doesn’t My Hardware Work?” on page A-6
“Cannot Create Session” on page A-6
“Why Was My Session Deleted?” on page A-7
“Cannot Find Hardware Vendor” on page A-7
“Cannot Find Devices” on page A-8
“What Is a Reserved Hardware Error?” on page A-9
“What Are Devices with an Asterisk (*)?” on page A-10
“Network Device Appears with an Asterisk (*)” on page A-11
“ADC Overrun Error with External Clock” on page A-11
“Cannot Add Clock Connection to PXI Devices” on page A-11
“Cannot Complete Long Foreground Acquisition” on page A-12
“Cannot Use PXI 4461 and 4462 Together” on page A-12
“Counters Restart When You Call Prepare” on page A-12
“Cannot Get Correct Scan Rate with Digilent Devices” on page A-12
“Cannot Simultaneously Acquire and Generate with myDAQ Devices” on page A-12
“Simultaneous Analog Input and Output Not Synchronized Correctly” on page A-12
“Counter Single Scan Returns NaN” on page A-13
“External Clock Will Not Trigger Scan” on page A-13
“Why Does My S/PDIF Device Time Out?” on page A-13
“Audio Output Channels Display Incorrect ScansOutputByHardware Value” on page A-
13
“MOTU Device Not Working Correctly” on page A-13

Find Devices and Create a Session
Identify the devices you can access:

A Troubleshooting Tips

A-4

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- ------------------------------------
1 ni cDAQ1Mod1 National Instruments NI 9205
2 ni cDAQ2Mod1 National Instruments NI 9201

Create a session object:
s = daq.createSession('ni');

For more information on the session-based information, see “Data Acquisition Session” on
page 3-2.

Refer to “Session-Based Interface Workflow” on page 5-2 to learn how to communicate
with CompactDAQ devices.

Is My NI-DAQ Driver Supported?
Data Acquisition Toolbox software is compatible only with specific versions of the NI-DAQ
driver and is not guaranteed to work with any other versions. For a list of the NI-DAQ
driver versions that are compatible with Data Acquisition Toolbox software, see
https://www.mathworks.com/hardware-support/data-acquistion-
software.html, and click the link for this vendor.

To see your installed driver version in the session-based interface, type:
v = daq.getVendors

v =

Number of vendors: 2

index ID Operational Comment
----- -------- ----------- ------------------------
1 ni true National Instruments
2 digilent false Click here for more info

Properties, Methods, Events

Additional data acquisition vendors may be available as downloadable support packages.
Open the Support Package Installer to install additional vendors.

If the version in the DriverVersion field does not match the minimum requirements
specified on the product page on MathWorks website, update your drivers.

 Troubleshooting Tips

A-5

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html

If your driver is incompatible with Data Acquisition Toolbox, verify that your hardware is
functioning properly before updating drivers. If your hardware is not functioning properly,
you are using unsupported drivers. For the latest NI-DAQ drivers, visit the National
Instruments website at http://www.ni.com/.

To find driver version in the National Instruments Measurement & Automation
Explorer:

1 Click Start > Programs > National Instruments > Measurement & Automation
Explorer.

2 Select Help > System Information.

Why Doesn’t My Hardware Work?
Use the Test Panel to troubleshoot your National Instruments hardware. The Test Panel
allows you to test each subsystem supported by your device, and is installed as part of the
NI-DAQmx driver software. Right-click the device in the Measurement & Automation
Explorer and choose Test Panel.

For example, to verify that the analog input subsystem on your PCIe-6363 device is
operating, connect a known signal (similar to the signal produced by a function
generator) to one or more channels, using a screw terminal panel.

If the Test Panel does not provide you with the expected results for the subsystem, and
you are sure that your test setup is configured correctly, then the hardware is not
performing correctly.

For your National Instruments hardware support, visit their website at http://
www.ni.com/.

Cannot Create Session
If you try to create a session using daq.createSession, and you see the following
error:
The vendor 'ni' is not known. Use 'daq.getVendors()' for a list of vendors.

1 get vendor information by typing:

v = daq.getVendors

A Troubleshooting Tips

A-6

http://www.ni.com/
http://www.ni.com/
http://www.ni.com/

v =

Data acquisition vendor 'National Instruments':

 ID: 'ni'
 FullName: 'National Instruments'
AdaptorVersion: '2.17 (R2010b)'
 DriverVersion: '9.1 NI-DAQmx'
 IsOperational: true

If you do not see output like this, see “Cannot Find Hardware Vendor” on page A-7.

Why Was My Session Deleted?
This warning:

A session was deleted while it was running.

occurs when you start background operations in the session and the session is silently
deleted. This could be caused by the session going out of scope at the end of a MATLAB
function, before the background task completes. To avoid this, insert a pause after
startBackground.

Cannot Find Hardware Vendor
If you try to get vendor information using daq.getVendors in the session-based
interface, and receive one of the following errors:

• NI-DAQmx driver mismatch:
Diagnostic Information from vendor: NI: There was a driver error while
loading the MEX file to communicate with National Instruments hardware.
It is possible that the NI-DAQmx driver is not installed or is older than
the required minimum version of '8.7'.

Install the NI-DAQmx driver of version specified in the error message.

If you have a version of the NI-DAQmx driver already installed, update your
installation to the minimum required version suggested in the error message.

• No vendors found:

No data acquisition vendors available.

Reinstall Data Acquisition Toolbox software.

 Troubleshooting Tips

A-7

• Corrupted or missing toolbox components:
Diagnostic Information from vendor: NI: The required MEX file to communicate
with National Instruments hardware is not in the expected location:

Reinstall Data Acquisition Toolbox software.
Diagnostic Information from vendor: NI: The required MEX file to communicate
with National Instruments hardware exists but appears to be corrupt:

Reinstall Data Acquisition Toolbox software.

Cannot Find Devices
If you try to find information using daq.getDevices and:

• Do not see the expected device listed. For example, if you are looking for an NI 9263
and NI 9265 and you type:

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- ------------------------------
1 ni cDAQ1Mod1 National Instruments NI 9205
2 ni cDAQ1Mod3 National Instruments NI 9203
3 ni cDAQ1Mod4 National Instruments NI 9201
4 ni cDAQ1Mod6 National Instruments NI 9213
6 ni cDAQ1Mod8 National Instruments NI 9265

To refresh the toolbox, type

daqreset

If you still do not see the devices, go to the National Instruments Measurement &
Automation Explorer (NI MAX) and examine the devices installed on your
CompactDAQ chassis.

• Receive one of the following errors

• No data acquisition devices available.

A Troubleshooting Tips

A-8

• Go to NI MAX and examine the devices installed on your CompactDAQ chassis.
• If you cannot see your devices in NI MAX, check to see if you have turned on

and connected your chassis.
• If you have turned on and connected your chassis and issued daqreset, and

you can see the devices in NI MAX, reinstall Data Acquisition Toolbox software.
• The requested subsystem 'AnalogInput' does not exist on this

device.

You could be:

• Using an output device to add input channels. See daq.getDevices to learn
more about an installed device.

• Using an unsupported device. See “Supported Hardware” on page A-2.
• The requested subsystem 'AnalogOutput' does not exist on this

device.

You could be:

• Using an input device to add output channels. See daq.getDevices to learn
more about an installed device.

• Using an unsupported device. See “Supported Hardware” on page A-2.
• If you are using NI 9402 with the counter/timer subsystem with the cDAQ-9172

chassis, plug the module into slots 5 or 6 only. If you plug the module into one of the
other slots, it will not show any counter/timer subsystem.

• If you are using an Ethernet CompactDAQ chassis, reserve the chassis in National
Instruments Measurement & Automation Explorer first. Only one system can reserve
this chassis at a time.

What Is a Reserved Hardware Error?
If you receive the following error:
The hardware associated with this session is reserved. If you are using it in another
session use the release function to unreserve the hardware. If you are using it in an
external program exit that program. Then try this operation again.

Identify the session that is currently not using this device, but has reserved it and release
the associated hardware resources. If the device is reserved by:

 Troubleshooting Tips

A-9

Another session in the current MATLAB program.
Do one of the following:

• Use release to release the device from the session that is not using the device.
• Delete the session object.

Another session in a separate MATLAB program.
Do one of the following:

• Use release to release the device from the session that is not using the device.
• Delete the session object.
• Exit the MATLAB program.

Another application.
Exit the other application.

In none of these measures work, reset the device from NI MAX.

Note Your network device may also appear as unsupported in the device information if it
is reserved or disconnected.

What Are Devices with an Asterisk (*)?
If you get device information and see a device listed with an asterisk (*) next to it, then
the toolbox does not support this device.
d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description
----- ------ --------- -------------------------------
1 ni cDAQ1Mod1 National Instruments NI 9401
2 ni cDAQ1Mod7 National Instruments NI 9219
3 ni cDAQ2Mod1 National Instruments NI 9205
4 ni cDAQ2Mod2 National Instruments NI 9263
5 ni cDAQ2Mod3 National Instruments NI 9203
6 ni cDAQ2Mod4 National Instruments NI 9201
7 ni cDAQ2Mod5 National Instruments NI 9265
8 ni cDAQ2Mod6 National Instruments NI 9213
9 ni cDAQ2Mod7 National Instruments NI 9227
10 ni cDAQ2Mod8 National Instruments NI 9422
11 ni Dev2 National Instruments PCIe-6363

A Troubleshooting Tips

A-10

12 ni Dev3 National Instruments USB-6255
13 ni Dev4 National Instruments USB-9233
14 ni Dev5 * National Instruments PCI-6601
15 ni Dev6 National Instruments PCI-6220
16 ni Dev8 * National Instruments PCI-6509

* Device currently not supported. See documentation on Unsupported Devices for more information.

• Make sure that your network device is not reserved and not disconnected.
• For a list of supported devices, see https://www.mathworks.com/hardware-

support/data-acquistion-software.html.

Network Device Appears with an Asterisk (*)
• If your network device appears as unsupported or unavailable, make sure that the

device is connected and reserved in National Instruments Measurement and
Automation Explorer. Issue daqreset to reset devices settings.

• If you see this timeout error when communicating with a network device:
Network timeout error while communicating with device 'cDAQ9188-1595393Mod4'

reconnect the device in National Instruments Measurement and Automation Explorer
and issue daqreset to reset devices settings.

ADC Overrun Error with External Clock
If you see this error when you synchronize acquisition using an external clock,
ADC Overrun Error: If you are using an external clock, make sure that
the clock frequency matches session rate.

• check your external clock for the presence of noise or glitches.
• check the frequency of your external clock. Make sure that it matches the session's

rate.

Cannot Add Clock Connection to PXI Devices
When you try to synchronize operations using a PXI 447x series device, you see this error:
"DSA device 'PXI1Slot2' does not support sample clock synchronization. Check device's user manual.

National Instruments DSA devices like the PXI 447x, do not support sample clock
synchronization. You cannot synchronize these devices in the session-based interface
using addClockConnection.

 Troubleshooting Tips

A-11

https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html

Cannot Complete Long Foreground Acquisition
When you try to acquire data in the foreground for a long period, you may get an out-of-
memory error. Switch to background acquisitions and process data as it is received or
save the data to a file to mitigate this issue.

Cannot Use PXI 4461 and 4462 Together
You cannot use PXI 4461 and 4462 together for synchronization, when PXI 4461 is in the
timing slot of the chassis.

Counters Restart When You Call Prepare
Counters stop running in the background when you call prepare to perform clocked
operations. This operation resets counters and restarts them when the new operation
starts.

Cannot Get Correct Scan Rate with Digilent Devices
The scan rate when you use a Digilent device, can be limited by the hardware’s buffer
size. See “Digilent Analog Discovery” on page B-4 for more information on maximum
and minimum allowable rates.

Cannot Simultaneously Acquire and Generate with myDAQ
Devices
You cannot acquire and generate synchronous data using myDAQ devices because they do
not share a hardware clock. If you have both input and output channels in a session and
you start the session, you will see near-simultaneous acquisition and generation. See
“Automatic Synchronization” on page 13-6 for more information.

Simultaneous Analog Input and Output Not Synchronized
Correctly
Do you have an external trigger? When you simultaneously acquire and generate analog
signals in the same session with an external trigger, they may correctly synchronize.

A Troubleshooting Tips

A-12

Counter Single Scan Returns NaN
An input single scan on counter input channels may return a NaN. If this occurs:

• make sure that the signal voltage complies with TTL voltage specifications.
• Make sure that the channel frequency is within the specified frequency range.

External Clock Will Not Trigger Scan
Adding an external clock to your session may not trigger a scan unless you set the
session’s rate to match the expected external clock frequency.

Why Does My S/PDIF Device Time Out?
S/PDIF audio ports appear in the device list even when you have no devices plugged in.

• If you add this device (port) to your session and you have no device plugged into the
port, the operation times out.

• If you have a device plugged into the S/PDIF port, you may need to match the session
rate to the device scan rate to get accurate readings. Refer to your device
documentation for information.

Audio Output Channels Display Incorrect
ScansOutputByHardware Value
If you have downloaded the Windows Audio support package with R2014a, you may see
incorrect values for the sessions ScansOutputByHardware property. The hardware
outputs the scans as specified and the property may incorrectly report this number. To
correct it, execute this code:
s = daq.createSession('directsound')
scansOutputByHardware_incorrect = s.ScansOutputByHardware;
correction = s.NotifyWhenScansQueuedBelow - 1;
scansOutputByHardware_corrected = scansOutputByHardware_incorrect + correction;

MOTU Device Not Working Correctly
MOTU devices Ultralight-mk3 and Traveler-mk3 may not work with DirectSound and Data
Acquisition Toolbox versions R2014a and R2014b. If you have these devices, specify the
device to use stereo pairs:

 Troubleshooting Tips

A-13

• In your MOTU Audio Console check "Use Stereo Pairs for Windows Audio" check box.
• Specify desired sample rate in the Sample Rate field.

A Troubleshooting Tips

A-14

Contacting MathWorks
If you need support from MathWorks, visit our website at https://
www.mathworks.com/support/.

Before contacting MathWorks, you should run the daqsupport function. This function
returns diagnostic information such as:

• The versions of MathWorks products you are using
• Your MATLAB software path
• The characteristics of your hardware

The output from daqsupport is automatically saved to a text file, which you can use to
help troubleshoot your problem. For example, to have the MATLAB software generate this
file for you, type

daqsupport

 Contacting MathWorks

A-15

https://www.mathworks.com/support/
https://www.mathworks.com/support/

Hardware Limitations by Vendor
This topic describes limitations of using hardware in the Data Acquisition Toolbox based
on limitations places by the hardware vendor:

B

Limitations by Vendor
For some vendors, there are limitations in the toolbox support for their functionality. See
the following topics for each vendor.

• “Digilent Analog Discovery” on page B-4
• “Measurement Computing Hardware” on page B-6
• “National Instruments Hardware” on page B-3
• “Windows Sound Cards” on page B-5

B Limitations by Vendor

B-2

National Instruments Hardware
• Required hardware drivers and any other device-specific software is described in the

documentation provided by your hardware vendor. For more information, see NI-
DAQmx Support from Data Acquisition Toolbox.

• You can use PXI_STAR with addTriggerConnection and addClockConnection
functions. All supported PXI modules automatically use the reference Clock
PXI_CLK10.

• Objects created for National Instruments devices, and used with the NI-DAQmx
adaptor have the following behavior when you use the inputSingleScan or
outputSingleScan function in the session-based interface:

• The first time the command is used with the object, the corresponding subsystem
of the device is reserved by the MATLAB session.

• If you then try to access that subsystem in a different session of the MATLAB
software, or any other application from the same computer, you might receive an
error message informing you that the subsystem is reserved. Use release to
unreserve the subsystem.

• You cannot acquire and generate synchronous data using myDAQ devices because
they do not share a hardware clock. If you have both input and output channels in a
session and you start the session, you will see near-simultaneous acquisition and
generation. See “Automatic Synchronization” on page 13-6 for more information.

• NI USB devices that have their own power supply can shut down if the driver does not
set the USB power correctly.

Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the
toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ adaptor
beginning in R2008b, you will receive a warning stating that this adaptor will be removed
in a future release. For more information, see the supported hardware page at https://
www.mathworks.com/hardware-support/data-acquistion-software.html.

 National Instruments Hardware

B-3

https://www.mathworks.com/hardware-support/nidaqmx.html
https://www.mathworks.com/hardware-support/nidaqmx.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html
https://www.mathworks.com/hardware-support/data-acquistion-software.html

Digilent Analog Discovery
• In the session-based interface, you cannot use multiple Digilent devices in the same

session. If you need to use multiple devices, add one device per session and start the
sessions sequentially.

• Digilent devices limit the minimum and maximum allowable rate of sampling based on
channel types:

• Analog Input only: 0.1 – 1,000,000
• Analog Output only: 4,096 – 1,000,000
• Input and Output: 8,192 – 300,000

Data Acquisition Toolbox conforms to the Digilent Player Mode for the Arbitrary
Waveform Generator.

• You cannot use background operations with Digilent devices. You can only perform
foreground operations using startForeground

• You cannot perform synchronous and triggered operations using a Digilent device in
the session-based interface.

• You cannot access the digital input and output capabilities of a Digilent device.

B Digilent Analog Discovery

B-4

Windows Sound Cards
• The maximum sampling rate depends on the StandardSampleRates property value.

If StandardSampleRates is On, the maximum SampleRate property value is 44100.
If StandardSampleRates is Off, the maximum SampleRate property value is
96000 if supported by the sound card.

For some sound cards that allow nonstandard sampling rates, certain values above
67,000 Hz will cause your computer to hang.

• If you are acquiring data when StandardSampleRates is Off, one of these messages
may be returned to the command line depending on the specific sound card you are
using:

• "Invalid format for device winsound" occurs when the sound card does
not allow for any nonstandard value.

• "Device Winsound already in use" occurs when a nonstandard sampling
rate is specified and the device takes longer than expected to acquire data.

 Windows Sound Cards

B-5

Measurement Computing Hardware
• For your Measurement Computing device to appear in the output of the

daq.getDevices function, you must first detect it in InstaCal.
• MCC devices are not supported by the Simulink blocks of the Data Acquisition Toolbox

block library.
• MCC devices are not support by the Analog Input Recorder.
• External clocking and triggering of MCC devices is not supported.
• Support for MCC devices is limited to analog output voltage and analog input voltage

measurements.

B Measurement Computing Hardware

B-6

Managing Your Memory Resources
Manage memory allocation on your system to temporarily store data that is used by an
analog input or output subsystem. This topic tells you:

C

What is Memory Allocation
When data is acquired from an analog input subsystem or output to an analog output
subsystem, it must be temporarily stored in computer memory.

Data Acquisition Toolbox software allocates memory in terms of data blocks. A data block
is defined as the smallest “slice” of memory that the data acquisition engine can usefully
manipulate. For example, acquired data is logged to a disk file using an integral number
of data blocks. A representation of allocated memory using n data blocks is shown below.

Data Acquisition Toolbox software strives to make memory allocation as simple as
possible. For this reason, the data block size and number of blocks are automatically
calculated by the engine. This calculation is based on the parameters of your acquisition
such as the sampling rate, and is meant to apply to most common data acquisition
applications. Additionally, as data is acquired, the number of blocks dynamically increases
up to a predetermined limit. However, the engine cannot guarantee that the appropriate
block size, number of blocks, or total memory is allocated under these conditions:

• You select certain property values. For example, if the samples to acquire per trigger
are significantly less than the FIFO buffer of your hardware.

• You acquire data at the limits of your hardware, your computer, or the toolbox. In
particular, if you are acquiring data at very high sampling rates, then the allocated
memory must be carefully evaluated to guarantee that samples are not lost.

You are free to override the memory allocation rules used by the engine and manually
change the block size and number of blocks, provided the device object is not running.
However, you should do so only after careful consideration, as system performance might
be adversely affected, which can result in lost data.

C What is Memory Allocation

C-2

How Much Memory Do You Need?
The memory (in bytes) required for data storage depends on these factors:

• The number of hardware channels you use
• The number of samples you need to store in the engine
• The data type size of each sample

The memory required for data storage is given by the formula:

memory required samples stored channel number data t = ¥ ¥ yype

Of course, the number of samples you need to store in the engine at any time depends on
your particular needs. The memory used by a device object is given by the formula:

memory used block size block number channel num= ¥ ¥ bber data type¥

 How Much Memory Do You Need?

C-3

Glossary

accuracy A determination of how close a measurement comes to the
true value.

acquiring data The process of inputting an analog signal from a sensor
into an analog input subsystem, and then converting the
signal into bits that the computer can read.

actuator A device that converts data output from your computer
into a physical variable.

adaptor The interface between the data acquisition engine and the
hardware driver. The adaptor's main purpose is to update
the engine with properties that are unique to the
hardware device.

A/D converter An analog input subsystem.

analog input subsystem Hardware that converts real-world analog input signals
into bits that a computer can read. This is also referred to
as an AI subsystem, an A/D converter, or an ADC.

analog output
subsystem

Hardware that converts digital data to a real-world analog
signal. This is also referred to as an AO subsystem, a D/A
converter, or a DAC.

bandwidth The range of frequencies present in the signal being
measured. You can also think of bandwidth as being
related to the rate of change of the signal. A slowly
varying signal has a low bandwidth, while a rapidly
varying signal has a high bandwidth.

base property A property that applies to all supported hardware
subsystems of a given type (analog input, analog output,
etc.). For example, the SampleRate property is supported
for all analog input subsystems regardless of the vendor.

callback function A function that you construct to suit your specific data
acquisition needs. If you supply the callback function as
the value for a callback property, then the function is

Glossary-1

executed when the event associated with the callback
property occurs.

callback property A property associated with a specific event type. When an
event occurs, the engine examines the associated callback
property. If a callback function is given as the value for the
callback property, then that function is executed. All event
types have a callback property.

channel A component of an analog input subsystem or an analog
output subsystem that you read data from, or write data
to.

channel group The collection of channels contained by an analog input
object or an analog output object. For scanning hardware,
the channel group defines the scan order.

channel property A property that applies to individual channels.

channel skew The time gap between consecutively sampled channels.
Channel skew exists only for scanning hardware.

common property A property that applies to every channel or line contained
by a device object.

configuration The process of supplying the device object with the
resources and information necessary to carry out the
desired tasks. Configuration consists of two steps: adding
channels or lines, and setting property values to establish
the desired behavior.

counter/timer
subsystem

Hardware that is used for event counting, frequency and
period measurement, and pulse train generation. This
subsystem is not supported by Data Acquisition Toolbox
software.

D/A converter A digital to analog subsystem.

data acquisition session A process that encompasses all the steps you must take to
acquire data using an analog input object, output data
using an analog output object, or read values from or
write values to digital I/O lines. These steps are broken

Glossary

Glossary-2

down into initialization, configuration, execution, and
termination.

data block The smallest “slice” of memory that the data acquisition
engine can usefully manipulate.

device object A MATLAB object that allows you to access a hardware
device.

device-specific property A property that applies only for specific hardware devices.
For example, the BitsPerSample property is supported
only for sound cards.

differential input Input channel configuration where there are two signal
wires associated with each input signal — one for the
input signal and one for the reference (return) signal. The
measurement is the difference in voltage between the two
wires, which helps reduce noise and any voltage common
to both wires.

digital I/O subsystem Hardware that sends or receives digital values (logic
levels). This is also referred to as a DIO subsystem.

DMA Direct memory access (DMA) is a system of transferring
data whereby samples are automatically stored in system
memory while the processor does something else.

engine A MEX-file (shared library) that stores the device objects
and associated property values that control your data
acquisition application, controls the synchronization of
events, and controls the storage of acquired or queued
data.

engineering units
properties

Channel properties that allow you to linearly scale input
or output data.

event An event occurs at a particular time after a condition is
met. Many event types are automatically generated by the
toolbox, while others are generated only after you
configure specific properties.

 Glossary

Glossary-3

execution The process of starting the device object and hardware
device. While an analog input object is executing, you can
acquire data. While an analog output object is executing,
you can output data.

FIFO buffer The first-in first-out (FIFO) memory buffer, which is used
by data acquisition hardware to temporarily store data.

full duplex A system that can send and receive information
simultaneously. For sound cards, full duplex means that
the device can acquire input data via an analog input
subsystem while outputting data via an analog output
subsystem at the same time.

input range The span of input values for which an A/D conversion is
valid.

interrupts The slowest but most common method to move acquired
data from the hardware to system memory. Interrupt
signals can be generated when one sample is acquired or
when multiple samples are acquired.

legacy interface The interface available in older versions of Data
Acquisition Toolbox. No longer supported. See “Transition
Your Code to Session-Based Interface” on page 14-2.

line A component of a digital I/O subsystem that you can read
digital values from, or write digital values to.

line group The collection of lines contained by a digital I/O object.

line properties Properties that are configured for individual lines.

logging A state of Data Acquisition Toolbox software where an
analog input object stores acquired data to memory or a
log file.

noise Any measurement that is not part of the phenomena of
interest.

onboard clock A timer chip on the hardware board which is programmed
to generate a pulse train at the desired rate. In most

Glossary

Glossary-4

cases, the onboard clock controls the sampling rate of the
board.

output range The span of output values for which a D/A conversion is
valid.

posttrigger data Data that is acquired and stored in the engine after the
trigger event occurs.

precision A determination of how exactly a result is determined
without reference to what the result means.

pretrigger data Data that is acquired and stored in the engine before the
trigger event occurs.

properties A characteristic of the toolbox or the hardware driver that
you can configure to suit your needs. The property types
supported by the toolbox include base properties, device-
specific properties, common properties, and channel or
line properties.

quantization The process of converting an infinitely precise analog
signal to a binary number. This process is performed by an
A/D converter.

queuing data The process of storing data in the engine for eventual
output to an analog output subsystem.

running A state of Data Acquisition Toolbox software where a
device object is executing.

sample rate The per-channel rate (in samples/second) that an analog
input or analog output subsystem converts data.

sampling The process whereby an A/D converter or a D/A converter
takes a "snapshot" of the data at discrete times. For most
applications, the time interval between samples is kept
constant (e.g., sample every millisecond) unless externally
clocked.

scan A set of measurements from all input channels in a session
at a specific point in time. For output channels, a scan is

 Glossary

Glossary-5

the values written to all output channels in a session at a
specific point in time.

scanning hardware Data acquisition hardware that samples a single input
signal, converts that signal to a digital value, and then
repeats the process for every input channel used.

sending A state of Data Acquisition Toolbox software where an
analog output object is outputting (sending) data from the
engine to the hardware.

sensor A device that converts a physical variable into a signal
that you can input into your data acquisition hardware.

session-based interface The session-based interface only works with National
Instruments CompactDAQ devices including Counter/
Timer modules. You cannot use other devices with this
interface. Using this interface you create a data
acquisition session object with daq.createSession. You
can then add channels to the session and operate all
channels within the session together.

signal conditioning The process of making a sensor signal compatible with the
data acquisition hardware. Signal conditioning includes
amplification, filtering, electrical isolation, and
multiplexing.

single-ended input Input channel configuration where there is one signal wire
associated with each input signal, and all input signals are
connected to the same ground. Single-ended
measurements are more susceptible to noise than
differential measurements due to differences in the signal
paths.

SS/H hardware Data acquisition hardware that simultaneously samples all
input signals, and then holds the values until the A/D
converter digitizes all the signals.

subsystem A data acquisition hardware component that performs a
specific task. Data Acquisition Toolbox software supports
analog input, analog output, and digital I/O subsystems.

Glossary

Glossary-6

trigger event An analog input trigger event initiates data logging to
memory or a disk file. An analog output trigger event
initiates the output of data from the engine to the
hardware.

 Glossary

Glossary-7

